Juelich Test october 2012

- Beam momentum $p=0.9 \mathrm{GeV} / \mathrm{c}$, beam intenisty $\sim 10^{5} / \mathrm{sec}$ files:

$$
\begin{aligned}
& \text { tel2266235528.hld.root } \\
& \text { tel2267004949.hld.root } \\
& \text { tel2267003239.hld.root } \\
& \text { tel2267010614.hld.root }
\end{aligned}
$$

(day	266	$23: 55: 28)$	1800	V
267	$00: 49: 49$	1750	V	
267	$00: 32: 39$	1900	V	
267	$01: 06: 14$	1700	V	

- ASIC configuration (see next slide)
- Experiment set-up (\& straw numbering)

ASIC set-up

Most of data taken with this set-up : Preamp Gain 1, rising time $\sim 40 \mathrm{~ns}$, pulse duration ~ 100 ns
stable ASIC operation (no oscilation etc)

FEE characteristics : reminder I: operating curves

Max walk ~ 10 ns

flatting for $Q>100 \mathrm{fC}$
(Q for delta pulse (eq. to $6 x$ larger detector pulse)

TOT -all channel

Threshold set-up above noise :
all channels shows similar TOT (small differences due to thresholds)
-TOT follows HV increase (as expected)

Drift time -all channels

Signals from ASIC (vfQDC)

- beam momentum $900 \mathrm{MeV} / \mathrm{c}$
- HV at 1750 V

HV 1700 V
Mean 90

1800 V
124

1900 V
145

Drift times- channel 11 vs HV

- Steeper rising for higher HV

Comparioson to simulation (Garfield+FEE transfer function)

TOT vs Tdrift -all straws (NS>13)

drift time vs TOT

The problem: second leg structure in TDrift>130 ns !!

Possible explanation: pile-up due to micro bunch structure of beam: one beam particle makes trigger the second one (within 100 ns trigger widnow) crosses straws and makes delayed (by max 100 ns) distribution

TOT vs TDrift: straws in one layer ($\mathbf{j}, \mathrm{j}+2, \mathrm{j}+4$)

Tracks crossing ONLY one layer (upper one) : nice correlation visible

TOT vs Tdrif: straws in one layer ($\mathrm{j}, \mathrm{j}+1, \mathrm{j}-1$),..)

Tracks crossing TWO layers (upper and lower one)
35% of one layer events (much more than expected from geometry $\sim 15 \%$)
Second structure more pronounced

Cross check with Sr90

Kraków set-up with trigger as in Juelich test
No second leg visible
distributions more smear-out (low energy electrons)

Tdrift [ns] straw [j]
10% of one layer events

Comparison to results from december test (0.6 GeV protons)

September
beam crosses both layers almost evenly

December
beam crosses more upper layer various Pramp gain tested

Comparison of cross correlations

Tdrift [ns]

Tdrift [ns]

TOT : reminder II: simulation results

TOT vs. Charge (Threshold $=100 \mu \mathrm{~A})$

Sadigheh Jowzaee
 Garfiled + FEE transfer function threshold $=100 \mu \mathrm{~A}$

PANDA Collaboration Meeting, GSI, Germany, 13-16 December 2011

TOT vs rdrift : calibration

$$
H V=1800 \mathrm{~V}
$$

Sr, Hit Multiplicity

TDC_pl1_el4

Spatial resolution

1750V
histo residuals

1800V
1900V
histo residuals

ToT 14 straw tracks

1750V

tot 14 straws

1800V

1900V

tot 14 straws

TM30

1750V
tot 14 straws tm30

1800V
tot 14 straws tm30

1900V

tot 14 straws tm30

