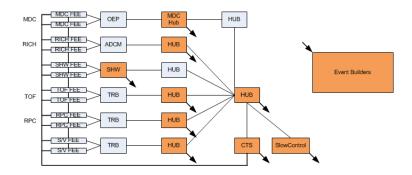


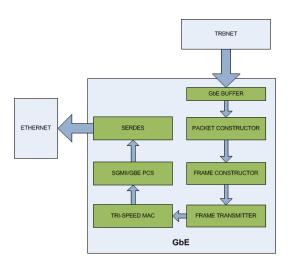
INTERNATIONAL PHD PROJECTS IN APPLIED NUCLEAR PHYSICS AND INNOVATIVE TECHNOLOGIES

This project is supported by the Foundation for Polish Science – MPD program, co-financed by the European Union within the European Regional Development Fund

NEXT GENERATION NETWORKING — GBE ON TRBV3 AND COMPUTE NODE

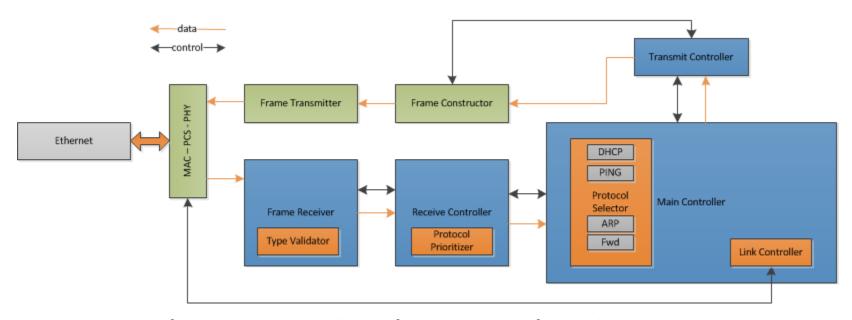

Grzegorz Korcyl

Jagiellonian University – PANDA Collaboration Meeting 12/2012

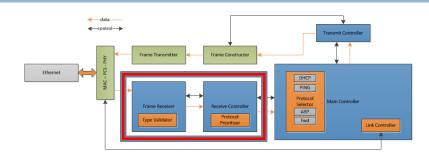

Plan

- 1. High level networking concept
 - Previous implementation
 - 2. Current development
- 2. Implementations
 - 1. TRBv3
 - 2. Compute Node
- 3. Other ongoing projects
- 4. Summary

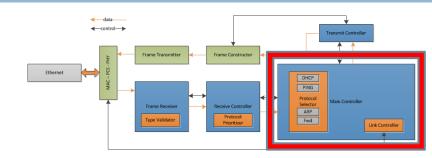
- Previous implementation
 - Requirements:
 - Transport data out from electronics to Event Builders
 - Compose UDP packets and transmit them over GbE
 - Implement for main data collectors in HADES (HUB, MDC, Shower addons)



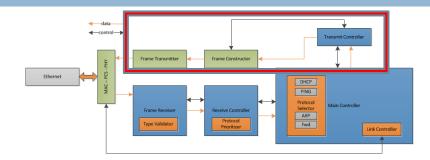
- Previous implementation
 - Results
 - Few successfull beamtimes with HADES
 - Unnoticeable packet loss
 - UDP fragmentation into Eth Frames
 - Performance:
 - 50MBps buffered mode
 - 118MBps no-buffered mode
 - Good starting point for further development


- Current development
 - Requirements
 - Full-duplex transmission
 - Transmission and reception of packets
 - Variety of protocols
 - Different experiments require different data handling
 - Basic networking protocols
 - Reliable transmission
 - Maximum speed available
 - Different platforms
 - Different experiments use different electronics
 - Interface with different internal protocols and data structures

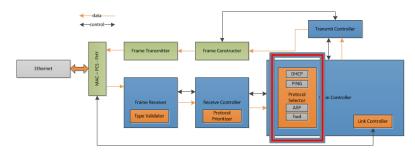
- Current development
 - Solution


Platform independent framework for Ethernet networks on FPGA devices

- Current development
 - Solution


- Frame Receiver and Receive Controller
 - Full speed Ethernet frames reception
 - Real preformance dependent on specific protocol implementation
 - Frames filtering based on addresses and protocol types
 - Protocol queuing based on priority settings
 - VLAN support

- Current development
 - Solution

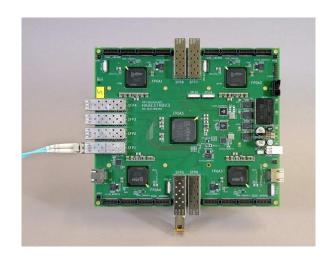

- Main Controller
 - Controls the link
 - Controls the flow of data in both directions
 - Contains Protocol Selector
 - A place to put specific protocols implementations
 - Transfers the received data to the appropriate protocol
 - Selects the protocols that has data ready to be transmitted
 - Simple to implement and add a new protocol
 - Intuitive interface
 - No deep interference with the framework needed
 - Proper design and buffering needed to keep performance at max

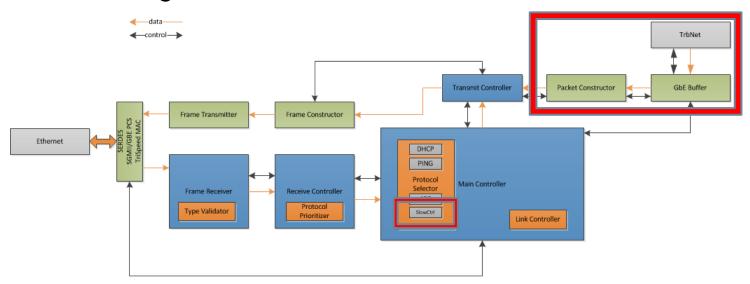
- Current development
 - Solution

- Transmit Controller and Frame Constructor
 - Full speed data transmission
 - Real preformance dependent on specific protocol implementation
 - Creates appropriate headers based on protocol which is selected to transmit data
 - Allows the injection of data from outside of Main Controller
 - Calculation of checksums etc...


- Current development
 - Solution

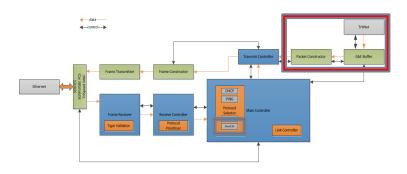
- Protocols implementations:
 - Basic needed for duplex communication
 - ARP (Address Resolution Protocol)
 - Network visibility
 - DHCP (Dynamic Host Configuration Protocol)
 - Network addresses acquisition
 - PING ICMP (Internet Control Message Protocol)
 - Checking if the board is alive
 - Additional
 - Statistics
 - UDP packets with statistics gathered from every protocol implementation


- Current development
 - Solution


- Features summary:
 - High-performance transmission and reception of Ethernet Frames
 - Filtering of incoming data
 - Framework ready solution easy to adjust for specific needs by replacing protocols implementations only
 - Basic protocols implemented solution working out of the box
 - Compact basic solution uses
 - 11% of slices on V4FX60
 - 5% of RAM on V4FX60
 - Runs so far on:
 - Lattice SC2, ECP2M, ECP3M, Xilinx Virtex4 FX, Virtex5 TX/FX
 - Over optical fibers, copper cables
 - Directly or via additional chips (Marvell)

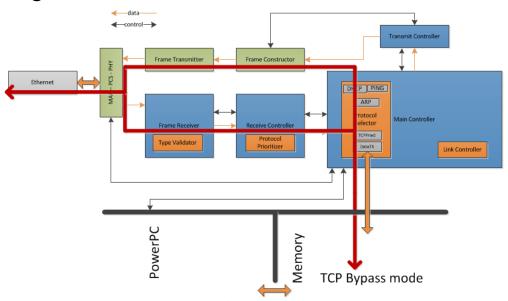
Implementations – TRBv3

- Universal measuring platform
- □ Part of a complex system or standalone
- 5x FPGA and no ETRAX
 - Possible communication
 - Gigabit Ethernet
 - TrbNet
 - Slow Control over Ethernet
 - Readout over Ethernet



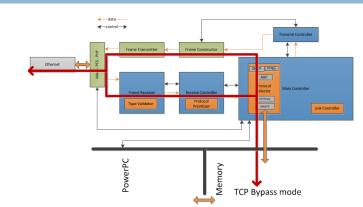
Implementations – TRBv3

- Injection on readout data packets
- TrbNet-over-GbE for Slow Control client
 - Upgrade of the Slow Control server work of Ludwig Maier


Implementations — TRBv3

- Readout data can be sent out while other protocols work simultaneously
- Work in the same way as the "old" GbE together with the same features
- TrbNet-over-GbE allows to control a single TRBv3 in the same way and with the same scripts as the "full" system

- Data collector and compute power for PANDA
- ATCA based system
- \square CNv2 single unit "blade" with 5x V4FX60
- CNv3 "blade" as motherboard for 4x mezzanine cards with V5FX70
- Networking CNv2
 - 2x Optical Links per FPGA
 - 1x RJ45 per FPGA
 - DDR memory
- Networking CNv3 (mezzanine card)
 - 2/4x Optical Links
 - □ 1x RJ45
 - DDR Memory



- Transmission over UDP of data collected in memory
- Delivery in and out of Ethernet frames for linux on PPC
- Slow control over Ethernet

- Networking
 - Algorithms running on PPC produce data stored in memory
 - ckets delivered directly to
 - Slow Control runs via linux packets delivered directly to memory
 - Differnet media available
 - SFP
 - RJ45 Marvell Chip
 - Operation and addressing configurable through shared registers

- Problems and tasks:
 - Performance tests needed
 - Where is the bottleneck?
 - Optimize protocol implementations to reduce deadtime
 - Permil of dropped frames on PPC
 - Bit errors?
 - Dependent on the transport medium timing issues?

Other ongoing projects

- Simplified TCP implementation
 - Data storage and buffering in DDR memories
 - Flow control logic
 - Multiple transactions
 - Progress:
 - Basic Telnet message exchange
- GbE Framework as traffic generator
 - Configurable generation of different types of packets
 - Useful in testing network infrastructures
 - As verification for modeling results
 - Progress:
 - Basic UDP flooding with timestamps and time measurement
- Used in readout prototypes for:
 - PANDA EMC
 - BELLE 2
 - FAZIA
 - □ CBM...

Summary

- GbE Framework as versatile solution for networking on FPGA based electronics
- Many features developed and tested
- Some parts verified during beamtimes others still to evaluate
- Many bugs to fix...
- Many applications to discover...