First Measurements with HV-MAP Sensor

Tobias Weber

Helmholtz Institut Mainz

PANDA Collaboration Meeting 10.12.12

- fast charge collection
- high radiation tolerance
- thickness of 50 μm
- \blacktriangleright low power consumption (\approx 20 $\mu W/pixel$)

- Time-over-Threshold
- self-triggering
- 10-20 MHz readout

MuPix2 Test Chip

- 180 nm technology
- 42 x 36 pixels with 27 x 40 μm²
- pixel logic on FPGA (Spartan 2)

Pixel Noise

- inject sequence of test pulses
- count detected pulses

reduction of pixel noise and threshold with high voltage
(S/N)_{HV} ≈ 38

Latency and ToT Measurement

Latency and ToT Measurement

- latency decreases with growing high voltage
- Time-over-threshold increases with high voltage
- both effects most prominent between 0 and 20 V

Shaper Signal with Laser Diode

- shaper signal typical for CR-RC
- shaping time of 6 μs

Measurements with ⁹⁰Sr (different Sensor)

- pixel close to readout logic more active
- up to 30 pixel hits per readout frame

Outlook

further measurements with MuPix2

- pixel noise
- double pulse resolution
- temperature behavior
- new version of HV-MAP (MuPix3) end of November
 - 80 x 80 μm² pixel size
 - faster shaping time (\approx 1 µs)
 - pixel and column logic
 - \Rightarrow new readout board (January 2013)
- readout of MuPix3 with optical link