Reconstruction in the luminosity detector with pixel sensors

Anastasia Karavdina

KPH, Uni Mainz

karavdin@kph.uni-mainz.de

10/12/2012

Design I: strip sensors

component	material	thickness [µm]	rad.length (X/X_0) [%]
strip sensor	silicon	150	0.159

Design II: pixel sensors

component	material	thickness $[\mu m]$	rad.length (X/X_0) [%]
cone support	kapton	20	0.027
flex-cable	kapton	50	0.0175
HV-MAPS	silicon	50	0.053
cooling disc	CVC-diamond	200	0.165
HV-MAPS	silicon	50	0.053
flex-cable	kapton	50	0.0175
one plane			0.306

Status [September 2012]

- · For strip sensors: full reconstruction chain
 - * ROOT geometry description \rightarrow simulation
 - hit reconstruction
 - track search
 - track fit
 - back-propagation to IP
 - alignment procedure
- · For pixel sensors:
 - preliminary ROOT geometry description \rightarrow simulation
 - hit reconstruction
 - · track search (based on merged hits)

Goals

- Full reconstruction chain running for pixel sensors
- Difficult to estimate hit errors for composite sensors structure \rightarrow Kalman Filter as a new track fitter

! warning !

To make code more general it was slightly rewritten. Also a few bugs were fixed.

- results for simulation with strip sensors: prove the reconstruction performance is the same like it was before
- results for simulation with pixel sensors: give idea about the reconstruction performance for this set-up

Please

don't try to compare any numbers between strip & pixel sensors!

Track reconstruction with strip sensors

Features

- + $0.03 < \theta < 0.05 \; rad$ and $|\phi| < 0.25 \; rad$ cuts on trk-cand
- To avoid "additional material" problem with GEANE, seed point of trk-cand shifted on z-axis for -350 μ m (out of plane)

Kalman Filter

Recursive algorithm that finds the best estimate for the state of dynamic systems from a series of noisy measurements.

- GENFIT (Generic Track Reconstruction) provides tool for mathematics of Kalman Filter
- Requires external code for the propagation of particles in magnetic fields and materials
- Inside pandaroot GEANE is used as a propagator

Reconstruction speed: $P_{beam} = 15 \ GeV/c$

(strip sensors)

Speed

1 trk per event:

- Hit rec: 3.19 ms
- CA: 3.81 ms Follow: 3.84 ms
- Minuit: 3.16 ms Kalman: 5.79 ms
 - GEANE: 4.04 ms

Tot.: ~ 15 ms

$\theta \text{ resolution } [\mu rad]: \text{ strip sensors}_{\scriptscriptstyle (10^5 \text{ events})}$

	Cellular Automat		Track-Following	
$P_{beam}, \; GeV/c$	Minuit	Kalman	Minuit	Kalman
15	127.73	133.21	127.84	133.31
11.91	129.20	132.45	129.34	132.56
8.9	138.5	137.57	138.63	137.69
4.06	203.06	195.35	203.25	195.45
1.5	745.87	736.01	744.33	736.58

Missed & ghost tracks

Definition I (comparison between rec.trk and MC trk)

- \diamond good trk: $|\theta^{rec} \theta^{MC}| < 4\sigma_{\theta}$ and $|\phi^{rec} \phi^{MC}| < 4\sigma_{\phi}$
- ghost trk: MC track is alredy matched to another rec.trk
- missed trk: MC track wasn't assigned to any rec.trk

Definition II (hits matching)

- o good trk: 70% hits are coming from the same MC trk
- ghost trk: less than 70% hits are coming from the same MC trk
- missed trk: MC track wasn't assigned to any rec.trk

(4 mrad < θ_{MC} < 8 mrad, $2 \cdot 10^5$ events, *GEANT*4)

		CA		Follow	
		missed,%	ghost,%	missed,%	ghost,%
$15 \ GeV/c$	I:	0.46	0.21	0.47	0.22
	II:	0.25	0	0.25	0
$11.91 \ GeV/c$	I:	0.65	0.36	0.66	0.35
	II:	0.29	0	0.32	0
$8.9 \ GeV/c$	I:	1.38	1.09	1.41	1.13
	II:	0.3	0	0.28	0
$4.06 \ GeV/c$	I:	4.06	3.71	4.09	3.68
	II:	0.39	0	0.41	0
1.5~GeV/c	I:	9.31	9.70	9.32	9.29
	II:	0.03	0	0.02	0

Track fit: Kalman Filter

Merged hits (pixel sensors)

In contrast to strip sensors:

pixel sensors give 2D information by one side measurement But we would like to have full ϕ covering

Merged hits (pixel sensors)

In contrast to strip sensors:

pixel sensors give 2D information by one side measurement But we would like to have full ϕ covering

Track reconstruction with pixel sensors

Features

- track search for "single" hits works only for CA! (has some issues, so no results will be shown today)
- + $0.03 < \theta < 0.05 \ rad$ and $|\phi| < 0.25 \ rad$ cuts on trk-cand
- Seed point of trk-cand shifted on z-axis for -350 μ m

Reconstruction speed: $P_{beam} = 15 \ GeV/c$

(pixel sensors)

Speed

1 trk per event:

- Hit rec(+merge): 6.25 ms
- CA: 3.12 ms Follow: 3.08 ms
- Minuit: 3.14 ms Kalman: 10.54 ms
 - GEANE: 4.63 ms

Tot.: ~ 18 ms

θ resolution [μ rad] : pixel sensors

(with kapton cone, 10^4 events, *GEANT*3)

	Cellular Automat		Track-Following	
$P_{beam}, \; GeV/c$	Minuit	Kalman	Minuit	Kalman
15	91.39	91.32	90.86	90.83
11.91	103.27	103.55	102.998	103.188
8.9	114.04	113.91	113.65	113.38
4.06	216.761	217.644	215.8	216.34
1.5	1017.74	985.9	1000.95	978.44

Missed & ghost tracks

Definition I (comparison between rec.trk and MC trk)

- \diamond good trk: $|\theta^{rec} \theta^{MC}| < 4\sigma_{\theta}$ and $|\phi^{rec} \phi^{MC}| < 4\sigma_{\phi}$
- ghost trk: MC track is alredy matched to another rec.trk
- missed trk: MC track wasn't assigned to any rec.trk

Definition II (hits matching)

- o good trk: 70% hits are coming from the same MC trk
- ghost trk: less than 70% hits are coming from the same MC trk
- missed trk: MC track wasn't assigned to any rec.trk

Missed & ghost tracks: pixel sensors

(4 mrad < θ_{MC} < 8 mrad, $2 \cdot 10^5$ events, GEANT4)

		CA		Follo	w
		missed,%	ghost,%	missed,%	ghost,%
$15 \ GeV/c$	I:	1.16	0.14	1.16	0.14
	II:	1.03	0	1.03	0
$11.91 \ GeV/c$	I:	1.54	0.59	1.54	0.59
	II:	0.95	0	0.95	0
$8.9 \ GeV/c$	I:	1.11	0.15	???	???
	II:	0.97	0	???	???
$4.06 \ GeV/c$	I:	2.17	0.43	2.17	0.43
	II:	1.74	0	1.74	0
1.5~GeV/c	I:	4.62	1.46	4.77	1.42
	II:	3.18	0	3.35	0

Track fit: Kalman Filter

Results & Plans

Results

- · Reconstruction for pixel sensors design is running
- · Kalman Filter can be used as track fit
- Track reconstruction performance is under study for both designs, results so far look reasonable

Plans

- · Implement alignment for pixel sensors design
- Background study (new DPM version): point-like beam, beam smearing
- Background p.d.f to luminosity fit function (Kernel Density Estimator)

Results & Plans

Results

- · Reconstruction for pixel sensors design is running
- · Kalman Filter can be used as track fit
- Track reconstruction performance is under study for both designs, results so far look reasonable

Plans

- Implement alignment for pixel sensors design
- Background study (new DPM version): point-like beam, beam smearing
- Background p.d.f to luminosity fit function (Kernel Density Estimator)

Looking forward to "It would be nice add\study\go deeply ..." ;

(4 mrad < θ_{MC} < 8 mrad, $2 \cdot 10^5$ events)

		CA		Follo	wc
		missed,%	ghost,%	missed,%	ghost,%
$15 \ GeV/c$	I:	0.45	0.2	0.45	0.2
	II:	0.25	0	0.25	0
$11.91 \ GeV/c$	I:	0.63	0.34	0.64	0.34
	II:	0.29	0	0.3	0
$8.9 \ GeV/c$	I:	0.78	0.49	0.77	0.49
	II:	0.29	0	0.28	0
$4.06 \ GeV/c$	I:	2.66	2.31	2.67	2.27
	II:	0.39	0	0.41	0
1.5~GeV/c	I:	23.11	23.52	23.14	23.12
	II:	0.03	0	0.02	0

Track fit: Minuit

 $P_{beam} = 15 \; GeV/c \; (10^4 events, GEANT3)$

 $P_{beam} = 1.5 \ GeV/c \ (10^4 events, GEANT3)$

$\theta \text{ resolution } [\mu rad] : \text{pixel sensors}$

Cellular Automat

	Minuit		Kalman	
$P_{beam}, \; GeV/c$	merged	single	merged	single
15	77.45	77.74	76.80	76.03
11.91	96.08	96.71	94.65	93.99
8.9	111.66	111.61	108.47	110.93
4.06	244.19	243.65	230.94	237.28
1.5	1271.06	1252.11	1122.18	1084.28

Reconstruction on "single" hits should be improved! (now it has bad efficiency)

Missed & ghost tracks: pixel sensors

(4 mrad < θ_{MC} < 8 mrad, $2 \cdot 10^5$ events)

		CA		Follow	
		missed,%	ghost,%	missed,%	ghost,%
$15 \ GeV/c$	I:	1.17	0.16	1.18	0.15
	II:	1.01	0	1.03	0
$11.91 \ GeV/c$	I:	1.65	0.70	1.66	0.71
	II:	0.94	0	0.95	0
$8.9 \ GeV/c$	I:	1.41	0.51	1.44	0.47
	II:	0.92	0	0.97	0
$4.06 \ GeV/c$	I:	14.72	13.06	14.76	13.02
	II:	1.67	0	1.73	0
1.5~GeV/c	I:	68.88	65.76	69.17	65.82
	II:	3.18	0	3.35	0

Missed & ghost tracks: pixel sensors

 $P_{beam} = 15 \; GeV/c \; (10^4 events, GEANT3)$

Acceptance difference with GEANT3 and GEANT4

0.01

θ. rad

0.002

0.004

0.006

0.008

0.01 θ. rad

0.002

0.004

0.006

Acceptance difference with GEANT3 and GEANT4

Acceptance difference with GEANT3 and GEANT4

Acceptance difference with GEANT3 and GEANT4

