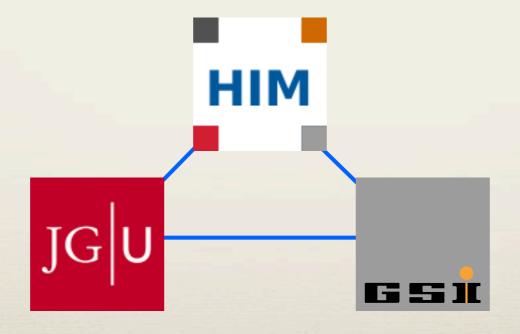
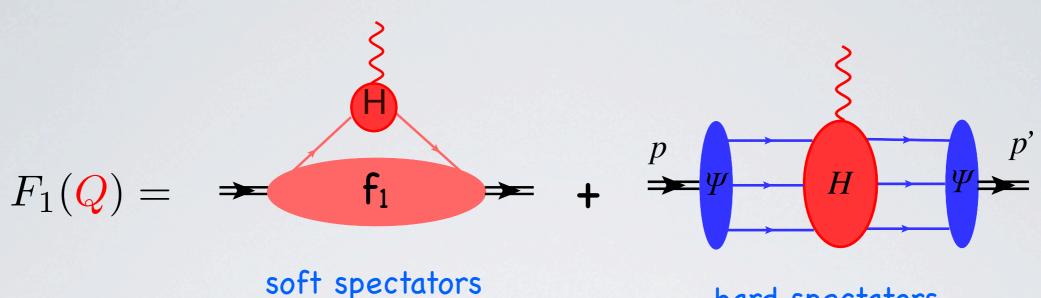
Application of the QCD factorization in SL and TL regions

Nikolay Kivel

Helmholtz Institute Mainz, Germany



QCD factorization at large Q²



the same power at large Q²

$$F_1^{(s)}(Q^2) \sim f^{(s)}(\ln Q^2/\Lambda^2)/Q^4$$

Duncan, Mueller 1980 Milshtein, Fadin 1981/82

- Large at moderate values of Q²
 Isgur, Smith 1984
 Nesterenko, Radyushkin 1989
 Braun et al, 2002, 2006
- SCET factorization scheme at large Q²
 NK, Vanderhaeghen PRD, 2010

hard spectators

Brodsky, Lepage 1979 Chernyak, Zhitnitsky 1977 Efremov, Radyushkin 1980

model independent QCD prediction

$$F_1^{(h)}(Q^2) \sim f(\ln Q^2/\Lambda^2)/Q^4$$

• Non-perturbative ψ is UNIVERSAL, well defined objects $\langle p | O_i | O_i \rangle$

QCD Sum Rules

Estimates: Lattice calculations

Low energy models: QSM, ...

Soft spectator contribution

hard-collinear scale: $Q\Lambda \lesssim m_N^2$

hard-collinear = collinear + soft

$$q=(0,0,0,-Q)$$

$$k'_{-}\sim Q,\ k'_{+}\sim \Lambda$$

$$k_{+}\sim Q,\ k_{-}\sim \Lambda$$

$$n \text{ hard-coll jet}$$

$$\bar{n} \text{ hard-coll jet}$$

$$\bar{n}=(1,0,0,1)$$
 soft background
$$p'=(Q,0,0,-Q)/2$$

$$k_{s}^{\mu}\sim \Lambda$$

$$p=(Q,0,0,Q)/2$$

$$\mbox{quark "jets"} \qquad \chi_{\bar{n}} = \ \mbox{${\rm P} \exp \left\{ ig \int_{-\infty}^{0} ds \, n \cdot A_{hc}(sn) \right\} \frac{1}{4}} \mbox{$\bar{\eta}$} \mbox{$\bar{\eta}$} \mbox{ψ}_{hc}(0) \label{eq:constraints}$$

Soft-Collinear Effective Theory Form Factor NK, Vanderhaeghen 2010

$$\langle p'|\bar{\chi}_n\gamma_{\perp\mu}\chi_{\bar{n}}+\bar{\chi}_{\bar{n}}\gamma_{\perp\mu}\chi_n|p\rangle_{SCET}=\bar{N}(p')\frac{\rlap{/}{n}\rlap{/}{m}}{4}\gamma_{\perp\mu}\,N(p)\,f_1(\Lambda Q,\mu_F)$$
 antiquark

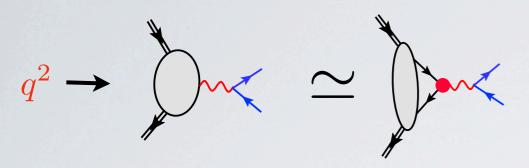
Soft spectator contribution

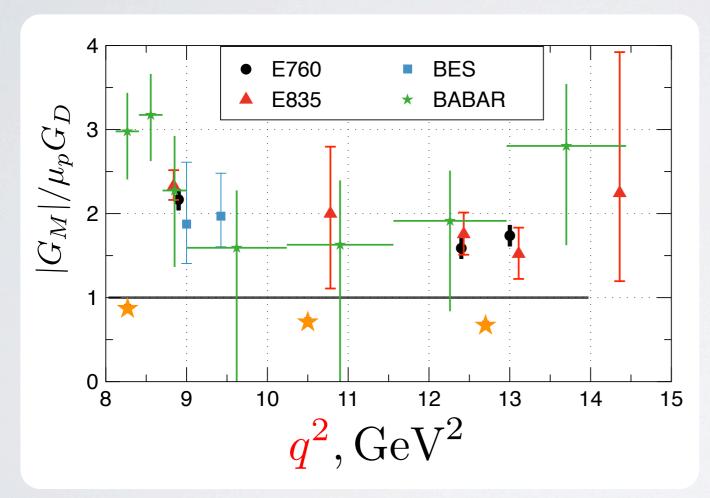
moderate values of Q2: $\,Q\Lambda\sim m_N^2\,$ hard-collinear scale is not large

$$Q^2=9-25{
m GeV}^2$$
 $\Lambda\simeq 0.3{
m GeV}$ $Q\Lambda\simeq 0.9-1.5{
m GeV}^2$ NK, Vanderhaeghen PRD,2010 $Q^2\gg Q\Lambda\sim m_N^2$

Soft spectator mechanism in SL and TL regions

$$q^2\gg \Lambda$$
 $q\Lambda\lesssim m_N^2$ (timelike scattering)





Hard spectator mechanism can not explain TL enhancement

$$G_M(Q^2 o \infty) = |G_M(q^2 o \infty)|$$
 analytic function in q^2 (Phragmen-Lindelöf theorem)

Current experiment: used assumptions

TL
$$|G_M|/\mu_p G_D \sim 2$$
 $|G_E| pprox |G_M|$

SL
$$G_M/\mu_p G_D \sim 0.9 - 0.7$$

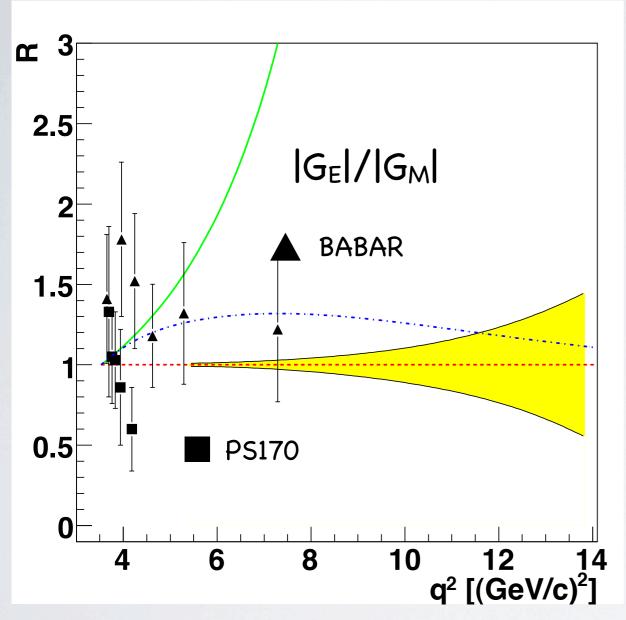
SL data

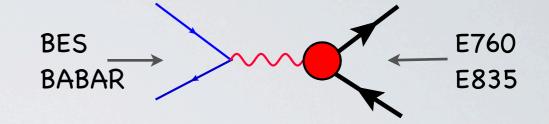
 \star SLAC, Sill et al, 1993 $G_E pprox G_M/\mu_p$

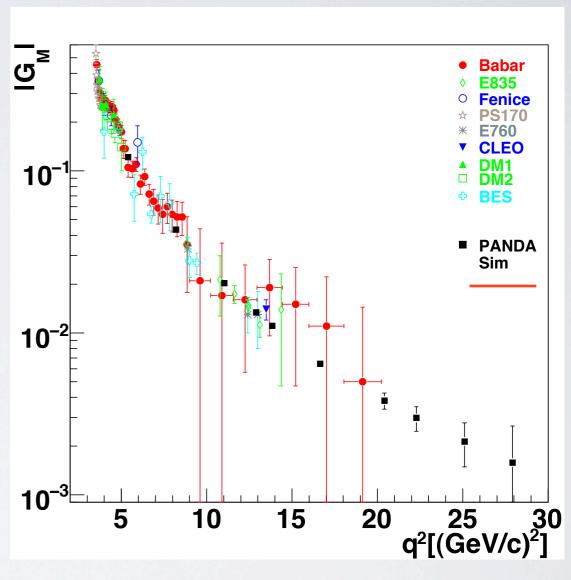
Soft spectator contribution: Sudakov logs provide ≈40% enhancement at large TL q²

Proton FFs in the time-like region q²>0

$$p + \bar{p} \to e^- + e^+$$





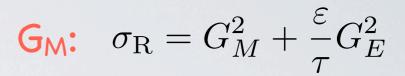


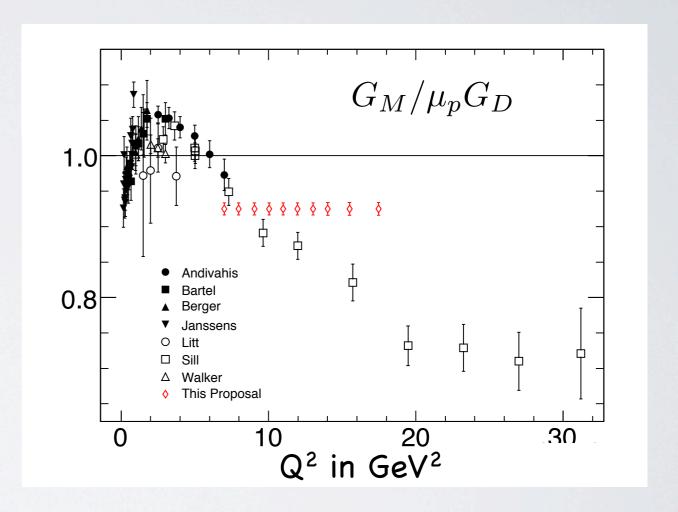
Future experiments in JLab, SL:

GE/GM:
$$\frac{P_t}{P_l} = -\sqrt{\frac{2\varepsilon}{\tau(1+\varepsilon)}} \frac{G_E}{G_M}$$

$$\mu_p G_E/G_M \qquad \begin{array}{c} \text{GEp(I)} \\ \text{GEp(III)} \\ \text{GEp(IV)} \\ \text{GEp(V)} \\ \text{GEp(V)} \\ \text{O.0} \\ \text{O.0} \\ \text{O.0} \\ \text{O.0} \\ \text{O.0} \\ \text{Q}^2 \text{ in } \text{GeV}^2 \\ \end{array}$$

- ** JLab Hall A E1207-109 G_{Ep}/G_{Mp} recoil pol Q²=6-14.8GeV²
- * JLab Hall C E1209-001 G_{Ep}/G_{Mp} recoil pol Q²=6-13GeV²





* JLab Hall A E1207-108 σ_R unpol Q²=7-17.5GeV², total err. < 2%

The ratio GE/GM in SL and TL regions

Assume that the soft spectator contribution dominates in G_E and G_M

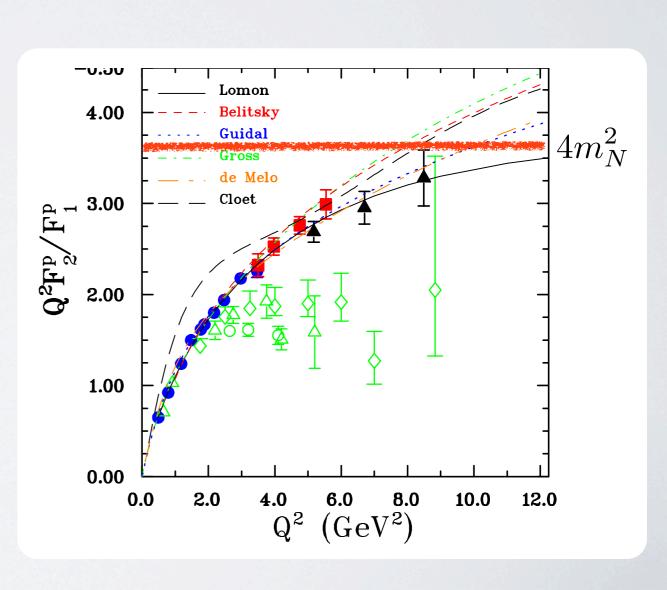
$$G_M(\mathbf{Q}) \approx \mathbf{f_1} \implies = f_1(\mathbf{Q})$$
 $G_E(\mathbf{Q}) \approx -\frac{1}{4} \Rightarrow \mathbf{f_2} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_2} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_2} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_4} \Rightarrow \mathbf{f_2} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_4} \Rightarrow \mathbf{f_2} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_3} \Rightarrow \mathbf{f_4} \Rightarrow \mathbf{f_5} \Rightarrow \mathbf{f_6} \Rightarrow \mathbf{f_6}$

SL
$$\frac{G_E}{G_M} = -\frac{1}{4} \frac{f_2(Q)}{f_1(Q)} + \mathcal{O}(1/Q^2) \approx 0$$

assuming $f_2(Q) \ll f_1(Q)$

$$\Rightarrow \frac{Q^2 F_2(Q^2)}{F_1(Q^2)} \approx \frac{\frac{1}{4}m^2 f_2 + 4m^2 f_1}{f_1} \simeq 4m_N^2$$

This is not pQCD asymptotic behavior!



The ratio GE/GM in SL and TL regions

Assume that the soft spectator contribution dominates in G_E and G_M

$$G_M(\begin{picture}(2000)(0,0) \put(0,0){\line(0,0){0.05cm}} \put(0,0){\line(0,0){0.05cm$$

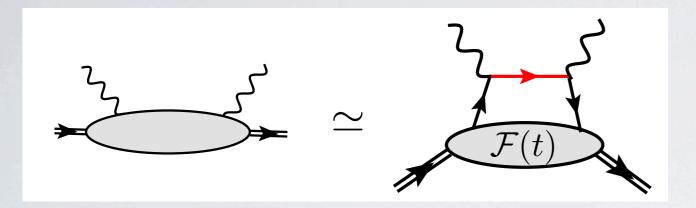
TL
$$\frac{|G_E|}{|G_M|} = \frac{1}{4} \frac{|f_2(Q)|}{|f_1(Q)|} + \mathcal{O}(1/Q^2) \ll 1$$

we can also expect $|f_2(Q)| \ll |f_1(Q)|$

- Sudakov factors cancel in the ratio therefore
 TL modification can be weaker comparing FFs
 - If G_E is small then the Rosenbluth separation is more sensitive to the TPE corrections

Wide Angle Compton Scattering in SL region

$$-t \sim -u \sim s \sim Q^2 \gg \Lambda^2$$
 $Q\Lambda \lesssim m_N^2$



Dominance of the soft spectator scattering

GPD (handbag)-model

Radyshkin, 1998 Kroll et al, 2005

SCET approach

Kivel, Vanderhaeghen, 2012

$$G_{\mathsf{M}}$$
 $f_1 = e_u(f_1^u - f_1^{\bar{u}}) + e_d(f_1^d - f_1^{\bar{d}})$

WACS
$$\mathcal{F} = e_u^2 (f_1^u + f_1^{\bar{u}}) + e_d^2 (f_1^d + f_1^{\bar{d}})$$

SCET power counting

$$\frac{f_1^{\overline{q}}}{f_1^{\overline{q}}} \sim \mathcal{O}((Q\Lambda)^{-2})$$

quarks dominate at large hard collinear scale

Wide Angle Compton Scattering in SL region

Kivel, Vanderhaeghen, 2012

$$\text{ratio} \quad \mathcal{F}(t) \simeq \frac{T_2(s,t)}{H_2(s,t)} \simeq \frac{T_4(s,t)}{H_4(s,t)} \simeq \frac{T_6(s,t)}{H_6(s,t)} \qquad \frac{\text{amplitude}}{\text{hard coeff. f.}}$$

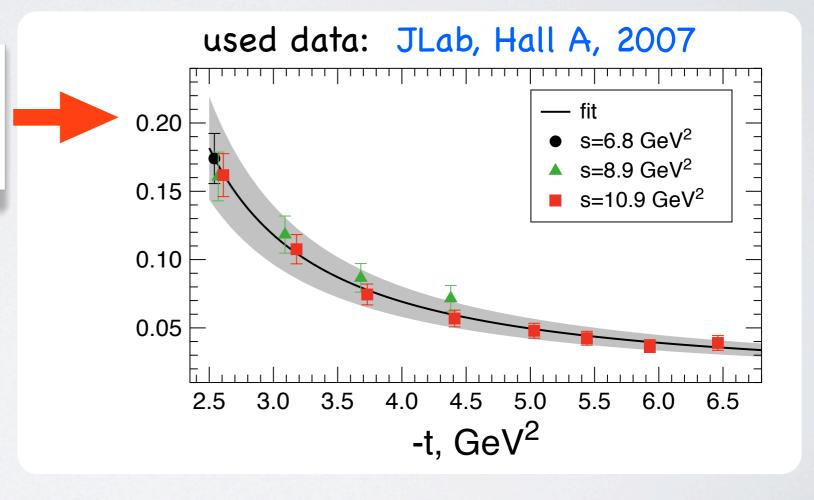
approximately s-independent at LO

$$\frac{d\sigma}{dt} = \frac{d\sigma^{\gamma q \to \gamma q}(s, t)}{dt} |\mathcal{F}(t)|^2$$

fit
$$\mathcal{F}(t) = rac{c}{\ln^2[-t/\Lambda^2]}$$

$$c = 0.10 \pm 0.01$$

$$\Lambda = 1.08 \pm 0.03$$



$$\chi^2/d.o.f. = 0.35$$

Dominance of the soft spectator contribution in WACS

NK, Vanderhaeghen, 2012

circular photon polarizations (R,L)

recoiled proton: longitudinal pol.

$$K_{LL} = \frac{\sigma_{\parallel}^R - \sigma_{\parallel}^L}{\sigma_{\parallel}^R + \sigma_{\parallel}^L}$$

SCET results: $K_{LL} \simeq K_{LL}^{\rm KN}$

SCET FFs cancel and asymmetry is not sensitive to proton structure

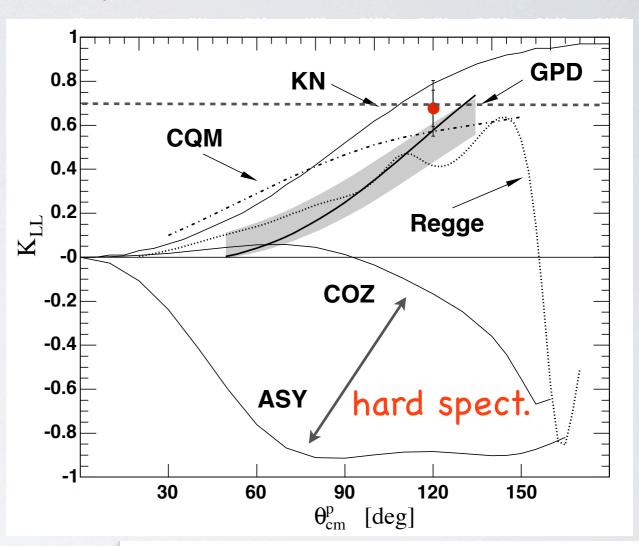
recoiled proton: transverse pol.

$$K_{LS} = \frac{\sigma_{\perp}^R - \sigma_{\perp}^L}{\sigma_{\perp}^R + \sigma_{\perp}^L}$$

SCET results: $K_{LS} \simeq \mathcal{O}(m^2/Q)$

 $u = -0.84 \text{GeV}^2$

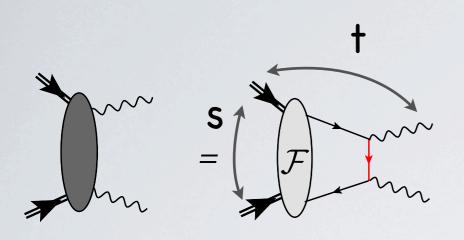
JLAB, 2004 s=6.9GeV2 t=-4GeV2



$$K_{LL} = 0.68 \pm 0.08$$
 (0.70)
 $K_{LS} = 0.114 \pm 0.08$ (0.066)

defined by power subleading terms (sensitive to helicity flip amplitudes)

Wide Angle Compton Scattering in TL region



Handbag model: Diehl, Kroll, Vogt 2002

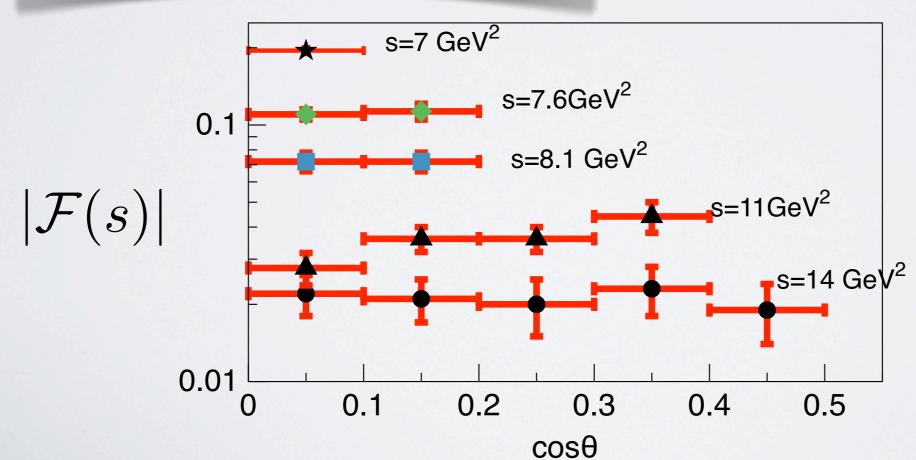
SCET: Kivel, Vanderhaeghen (in progress)

$$\mathcal{F}(s) \simeq \frac{T_2(s,\cos\theta)}{H_2(s,\cos\theta)} \simeq \frac{T_4(s,\cos\theta)}{H_4(s,\cos\theta)} \simeq \frac{T_6(s,\cos\theta)}{H_6(s,\cos\theta)}$$

 $\cos \theta$ -independent!

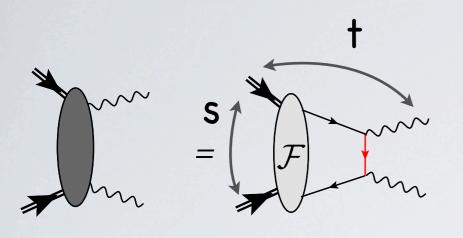
$$\frac{d\sigma}{d\cos\theta} = \frac{d\sigma^{q\bar{q}\to\gamma\gamma}(s,\cos\theta)}{d\cos\theta} |\mathcal{F}(s)|^2$$

used data: BELLE, 2005 $\gamma\gamma o par{p}$



|t|,|u|>2.5GeV2

BB or Two Photon Production



Kivel, Vanderhaeghen (in progress)

$$\mathcal{F}(s) \simeq \frac{T_2(s,\cos\theta)}{H_2(s,\cos\theta)} \simeq \frac{T_4(s,\cos\theta)}{H_4(s,\cos\theta)} \simeq \frac{T_6(s,\cos\theta)}{H_6(s,\cos\theta)}$$

 $\cos \theta$

$$\frac{d\sigma}{d\cos\theta} = \frac{d\sigma^{q\bar{q}\to\gamma\gamma}(s,\cos\theta)}{d\cos\theta} |\mathcal{F}(s)|^2$$

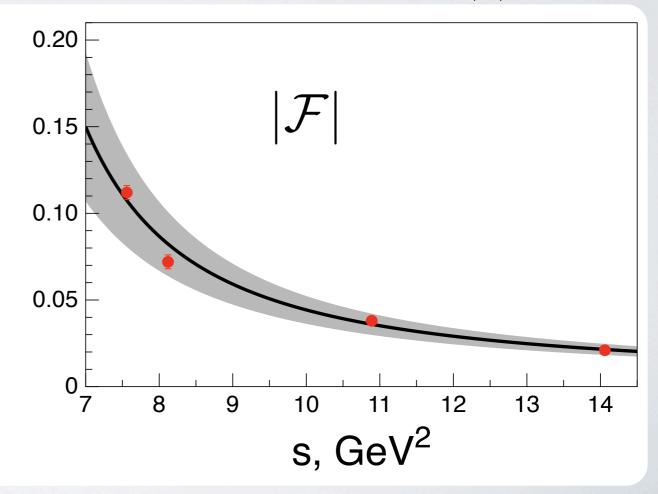
fit
$$|\mathcal{F}(s)| = \frac{c}{\ln^2[s/\Lambda^2]}$$

$$c = 0.027 \pm 0.003$$

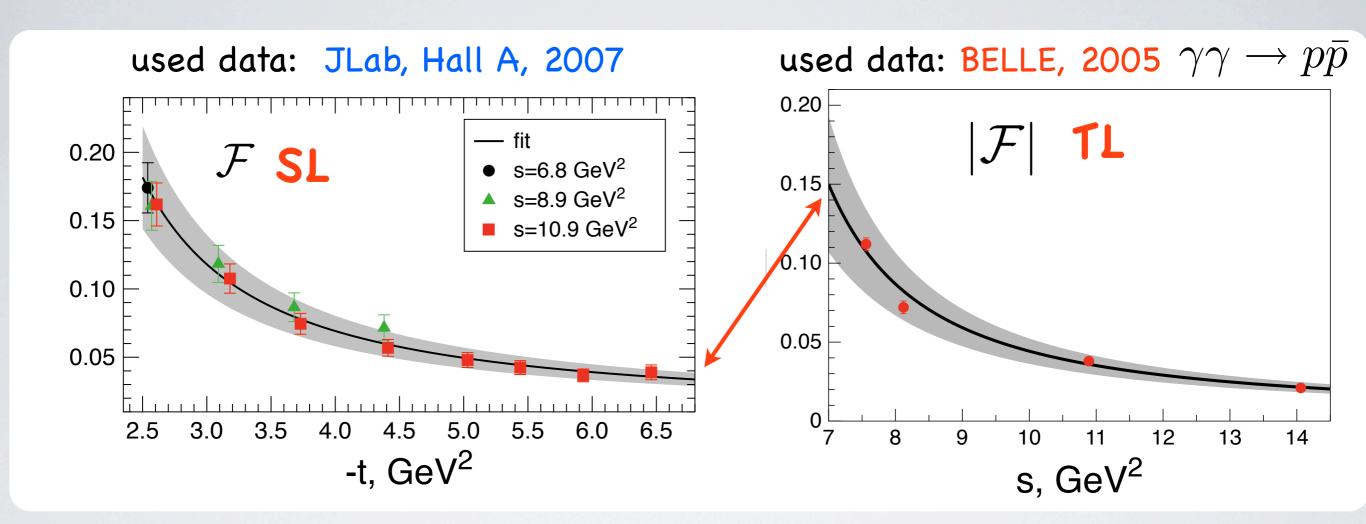
$$\Lambda = 2.13 \pm 0.04$$

$$\chi^2/d.o.f. = 4.5$$

used data: BELLE, 2005 $\gamma\gamma o par{p}$



SCET FFs in SL and TL regions

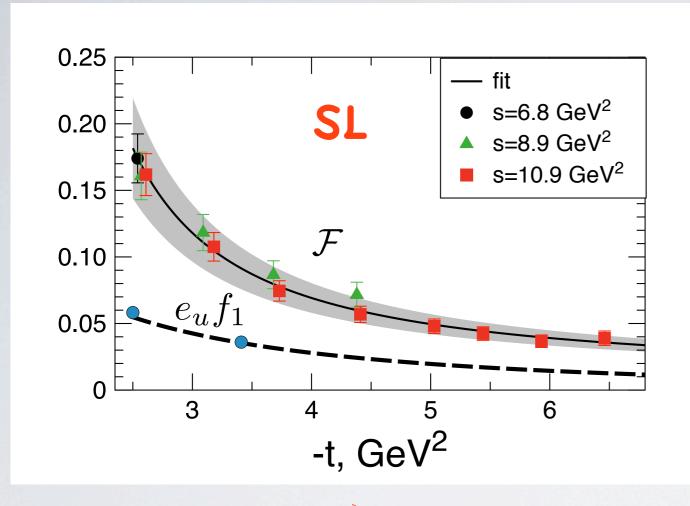


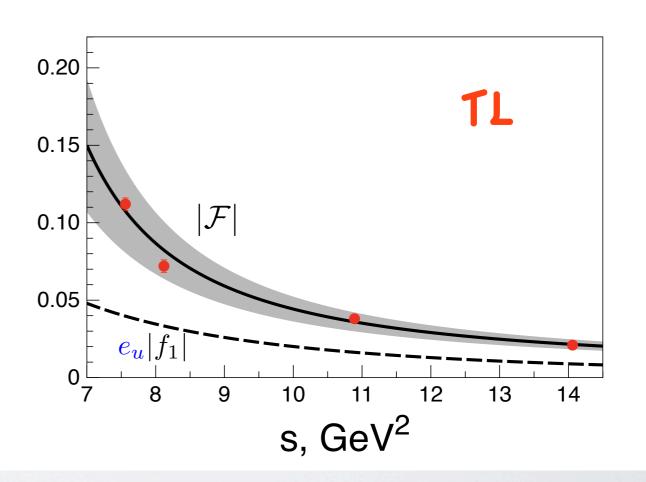
The large soft spectator contribution predicts

$$\frac{\mathsf{TL}}{\mathsf{SL}} \ \frac{|\mathcal{F}(s)|}{\mathcal{F}(s)} > 1$$

enhancement in TL region as in FF case

FFs in SL and TL regions





$$\mathcal{F} = e_u^2 (f_1^u + f_1^{\bar{u}}) + e_d^2 (f_1^d + f_1^{\bar{d}})$$

GM

$$|\mathcal{F}| = |e_u^2(f_1^u + f_1^{\bar{u}}) + e_d^2(f_1^d + f_1^{\bar{d}})|$$

$$e_u^2(f_1^u - f_1^{\bar{u}}) + e_d^2(f_1^d - f_1^{\bar{d}})$$

WACS

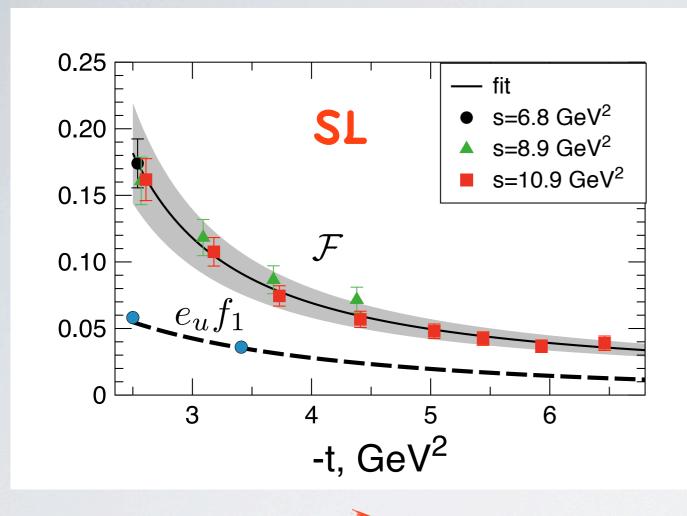
$$|e_u|f_1| = |e_u^2(f_1^u - f_1^{\bar{u}}) + e_u e_d(f_1^d - f_1^{\bar{d}})|$$

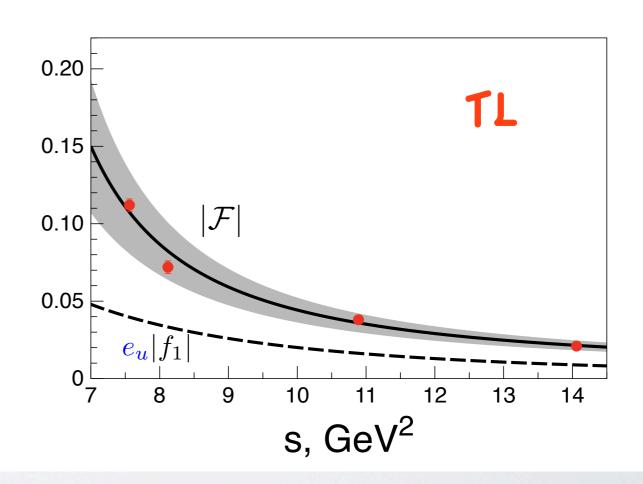
$$e_{u}f_{1} = e_{u}^{2}(f_{1}^{u} - f_{1}^{\bar{u}}) + e_{u}e_{d}(f_{1}^{d} - f_{1}^{\bar{d}})$$

$$f_1 \simeq G_M \frac{\tau + R}{1 + \tau}$$
 $\tau = Q^2/4m_N^2$ $R = G_E/G_M$

$$|f_1| \simeq |G_M|$$

FFs in SL and TL regions





$$\mathcal{F} = e_{\mathbf{u}}^{2} (f_{1}^{\mathbf{u}} + f_{1}^{\bar{\mathbf{u}}}) + e_{\mathbf{d}}^{2} (f_{1}^{\mathbf{d}} + f_{1}^{\bar{\mathbf{d}}})$$

GM

$$|\mathcal{F}| = |e_u^2(f_1^u + f_1^{\bar{u}}) + e_d^2(f_1^d + f_1^d)|$$

$$e_u^2(f_1^u - f_1^{\bar{u}}) + e_d^2(f_1^d - f_1^{\bar{d}})$$

WACS

$$|e_u|f_1| = |e_u^2(f_1^u - f_1^{\bar{u}}) + e_u e_d(f_1^d - f_1^{\bar{d}})|$$

$$e_{u}f_{1} = e_{u}^{2}(f_{1}^{u} - f_{1}^{\bar{u}}) + e_{u}e_{d}(f_{1}^{d} - f_{1}^{\bar{d}})$$

Is it really antiquarks? (from DIS we know that # of antiquarks at large x is very small !!!)

SCET FFs in TL regions: alternative approach

NK, Vanderhaeghen (in progress)

Assume that antiquark contribution is very small $f_1^{ar{q}} \ll f_1^q$

$$|\mathcal{F}| \approx |e_u^2 f_1^u + e_d^2 f_1^d|$$
 $|f_1| \approx |e_u f_1^u + e_d f_1^d|$

- use |Geff| from the FF data $|G_{eff}|(s) \simeq \frac{C}{s^2 \ln^2[s/\Lambda^2]}$ with C=66.8GeV² Λ =300MeV
 - consider as a free parameters

 $\Delta\phi$ relative phase between F1 and F2 $(\cos\Delta\phi<0)$

 $r=|f_1^d|/|f_1^u|$ ratio of the abs. values of the quark ffs

 δ relative phase between f_1^d and f_1^u

kinematical power corrections have been added

SCET FFs in TL regions: alternative approach

NK, Vanderhaeghen (in progress)

Assume that antiquark contributions are very small

$$f_1^{\overline{q}} \ll f_1^{\overline{q}}$$

$$|\mathcal{F}| \approx |e_u^2 f_1^u + e_d^2 f_1^d|$$
 $|f_1| \approx |e_u f_1^u + e_d f_1^d|$

$$|f_1| \approx |e_u f_1^u + e_d f_1^d|$$

Our model
$$|\mathcal{F}|^2 \approx \frac{e_u^2 |f_1|^2}{1 - \cos^2 \Delta \phi \frac{4\tau}{(1+\tau)^2}} \frac{1 + r/2 + r^2/16}{1 - r + r^2/4}$$

$$|f_1| \simeq |G_M|$$

$$r = |f_1^d|/|f_1^u|$$

$$\tau = \frac{s}{4m_N^2}$$

assuming (NB!)

$$|G_M| = |G_E| \iff |F_2| \simeq \frac{-2\cos\Delta\phi}{1+\tau}|F_1|$$

$$\frac{4\tau}{(1+\tau)^2} = \frac{16m_N^2}{s} + \mathcal{O}(1/\tau)$$

assuming

$$\Re f_1^{\boldsymbol{u}} f_1^{*\boldsymbol{d}} \approx |f^{\boldsymbol{u}}||f_1^{\boldsymbol{d}}|$$

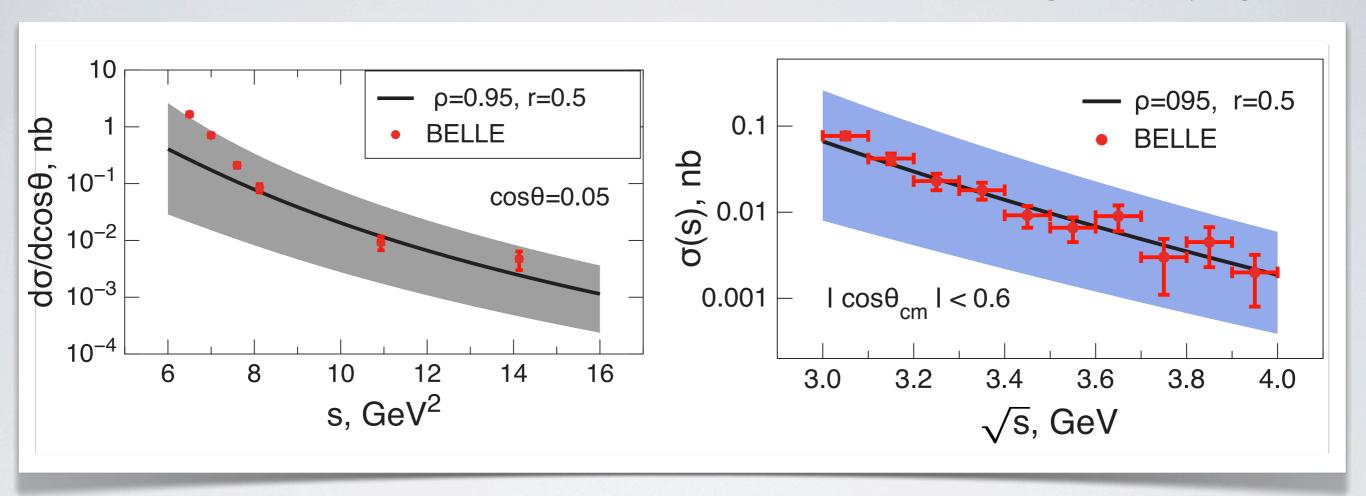
we need

$$\cos \Delta \phi \simeq -0.95$$
$$r \simeq 0.5 - 0.6$$

Description BB production

 $\gamma\gamma \to p\bar{p}$ data Belle collab., 2005

NK, Vanderhaeghen (in progress)



$$|G_{eff}|(s)\simeq rac{C}{s^2\ln^2[s/\Lambda^2]}$$
 with C=66.8GeV² Λ =300MeV

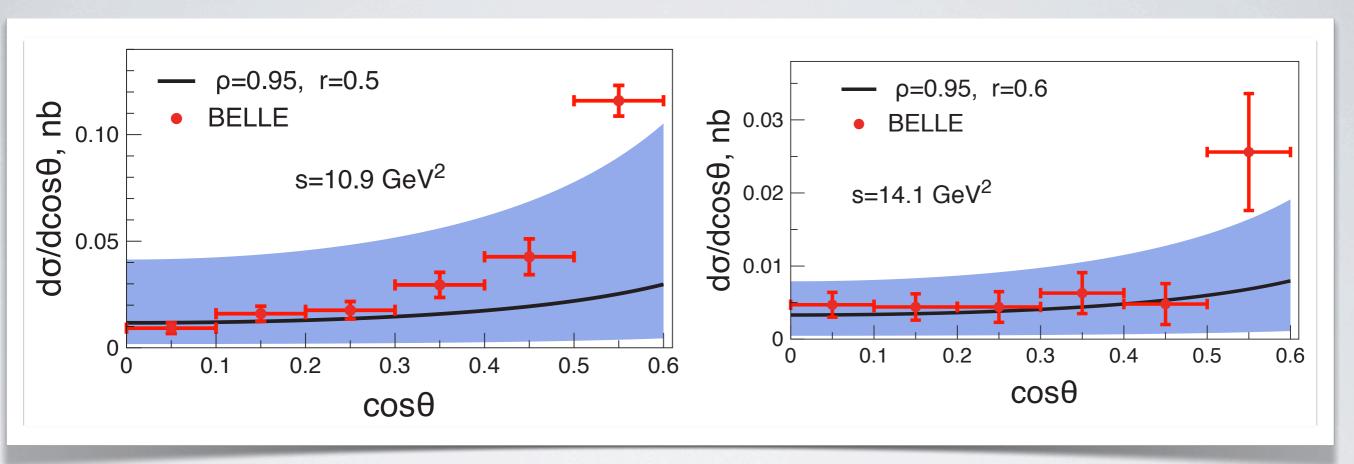
shaded area
$$0 < r = |f_1^d|/|f_1^u| < 1$$

$$0 < \rho = -\cos \Delta \phi < 1$$

relative phase between F1 and F2

Description BB production

 $\gamma\gamma \to p\bar{p}$ data Belle collab., 2005 NK, Vanderhaeghen (in progress)



$$|G_{eff}|(s) \simeq rac{C}{s^2 \ln^2[s/\Lambda^2]}$$
 with C=66.8GeV² Λ =300MeV

shaded area

$$0 < r = |f_1^d|/|f_1^u| < 1$$

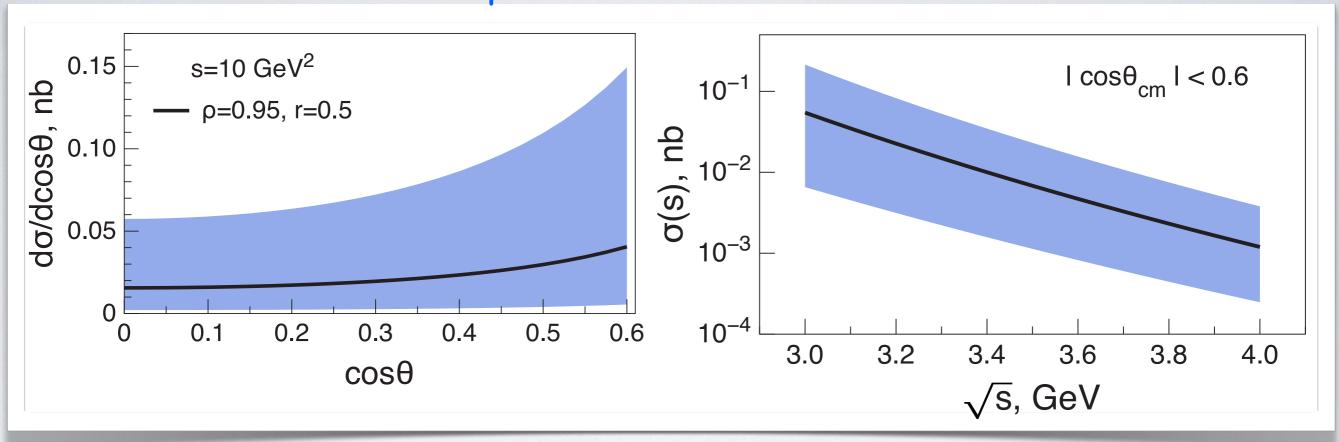
$$0<
ho=-\cos\Delta\phi<1$$
 relative phase between F1 and F2

Description BB production

PANDA $p\bar{p} \rightarrow \gamma \gamma$

predictions

NK, Vanderhaeghen (in progress)



$$|G_{eff}|(s)\simeq rac{C}{s^2\ln^2[s/\Lambda^2]}$$
 with C=66.8GeV 2 Λ =300MeV

shaded area
$$0 < r = |f_1^d|/|f_1^u| < 1$$

 $0<
ho=-\cos\Delta\phi<1$ relative phase between F1 and F2

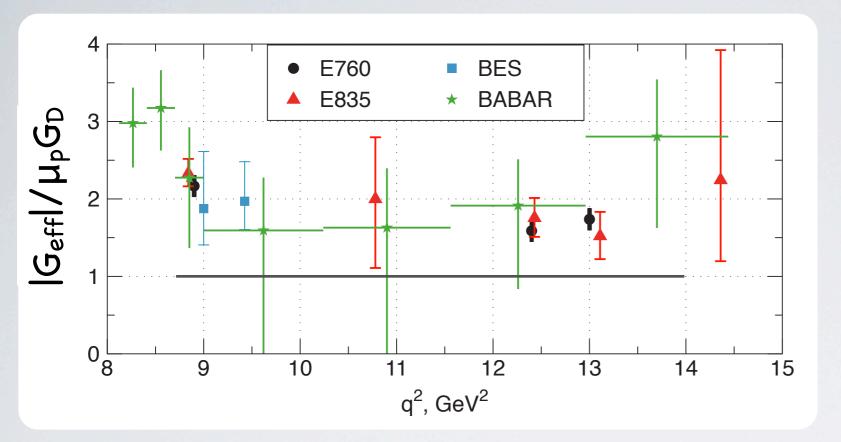
Conclusions

- QCD factorization for e.m. FFs includes hard and soft spectator contributions.
- There are indications that the soft spectator contribution is large or even dominant for moderate values of Q²: $Q\Lambda \sim m_N^2$

FF enhancement in the TL region

- The full Q² dependence of the soft spectator contribution can not be computed from pQCD but can be described by universal form factors within SCET factorization framework
- QCD factorization allows us to study the soft spectator mechanism in other reactions: WACS in SL and 2γ (or $B\bar{B}$)-production in TL regions
- Soft overlap in WACS and e.m. FF are not completely independent and the new data (SL and TL) will help to understand much better corresponding long-distance dynamics
- SCET factorization provides predictions which can be checked experimentally in SL (JLab) and TL (PANDA) regions

FFs ratio: timelike vs. spacelike region



enhancement in TL region

$$\frac{|G_{eff}|}{\mu_p G_D} \simeq 2$$

$$\frac{|F_1|_{\text{TL}}}{|F_1|_{\text{SL}}} \simeq \frac{|e^{-S}U_1|_{\text{TL}}}{|e^{-S}U_1|_{\text{SL}}} \frac{|f_1(q)|_{\text{TL}}}{|f_1(Q)|_{\text{SL}}}$$

Sudakov logs provide enhancement at large time-like q²

