Feasibility studies of a measurement of Transition Distribution Amplitudes with PANDA

María Carmen Mora Espí

Helmholz Institut Mainz

moraespi@kph.uni-mainz.de

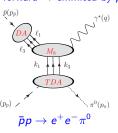
Electromagnetic Processes December 10th, 2012

Carl Zeiss Stiftung

Helmholtz Institute Main

- Introduction
- Simulation Characteristics
- Reconstruction and event selection
- Results
- Conclusion

Transition Distribution Ampliltudes approach: reaction $\bar{p}p \to \gamma^*\pi^0 \to e^+e^+\pi^0$


pende

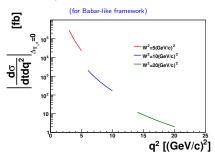
- New non perturbative objects
- Fourier transform of a Matrix Element of a three-quark light-cone local operator
- Transition between a proton and a pion
- Information about the π -cloud in the proton
- Hard scale higher momentum transfer

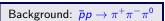
In CM of \overline{P} ANDA π^0 backward \rightarrow emmited by p π^0 forward \rightarrow emmited by \overline{p}

Validity?

s-dependence of cross section $(\bar{p}p \rightarrow e^+e^-\pi^0)$ $\rightarrow \overline{P}ANDA$

Studies based on: J. P. Lansberg et al., Phys Rev D 76, 111502(R) (2007)


CM


Signal:
$$\bar{p}p \rightarrow e^+e^-\pi^0$$

- $W^2 = 5 \text{ GeV}^2$ and 10 GeV^2 ($W^2 = s$)
- \bullet π^0 Forward and Backward
 - \rightarrow 4 simulations
- Calculated for π -transverse momentum $\Delta_{T_{=0}} = 0$

Simulation

ullet Extrapolated over a $\Delta_{T_{\pi^0}} < 0.5\,\mathrm{GeV}$ and $[q_{min}^2,\,q_{max}^2]^{1}$ Values for q_{min}^2 and q_{max}^2 are shown later in slide 6 Input for the Event Generator

- No data
 - The same angular distribution as the signal
- 10⁶ times higher

ASSOCIATION

Number of events simulated

	Reaction	$W^2(\text{GeV}^2)$	π^0	N _{events}	q^2 region
P s	$\pi^{+}\pi^{-}\pi^{0}$	5	forward	$\approx 10^8$	$3.61 < q^2 < 5.29$
rou essic	$\pi^+\pi^-\pi^0$	5	backward	$\approx 10^8$	$3.61 < q^2 < 5.29$
Background suppression	$\pi^+\pi^-\pi^0$	10	forward	$\approx 10^8$	$5.76 < q^2 < 9.18$
	$\pi^+\pi^-\pi^0$	10	backward	$\approx 10^8$	$5.76 < q^2 < 9.18$
8	$e^{+}e^{-}\pi^{0}$	5	forward	$\approx 10^6$	$3.61 < q^2 < 5.29$
Acceptance studies	$\mathrm{e^{+}e^{-}\pi^{0}}$	5	backward	$\approx 10^6$	$3.61 < q^2 < 5.29$
ccer	$e^{+}e^{-}\pi^{0}$	10	forward	$pprox 10^6$	$5.76 < q^2 < 9.18$
s	$e^{+}e^{-}\pi^{0}$	10	backward	$pprox 10^6$	$5.76 < q^2 < 9.18$
- D 10	$e^{+}e^{-}\pi^{0}$	5	forward	150 000	$3.61 < q^2 < 5.29$
stice	$e^{+}e^{-}\pi^{0}$	5	backward	150 000	$3.61 < q^2 < 5.29$
Expected statistics	$e^{+}e^{-}\pi^{0}$	10	forward	6 000	$5.76 < q^2 < 9.18$
	$e^+e^-\pi^0$	10	backward	6 000	$5.76 < q^2 < 9.18$

For expected statistics: $\mathcal{L} = 2 \, \text{fb}^{-1}$

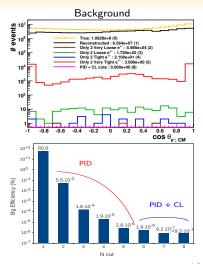
Simulations done in the new cluster of the Helmoltz Institute Mainz

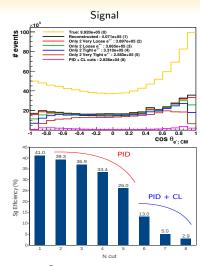
Reaction reconstruction

Event selection: Combinations of $\pi^0 + e^+ + e^-$ candidates per event

- Particle identification cuts (PID):
 - Different cuts on the particle identification probability
- Kinematic fit cuts Confidence level (CL):
 - Different cuts on the quality of the fit for signal and background hypotheses

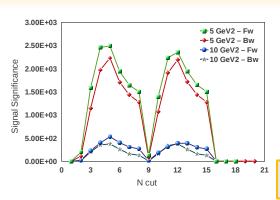
Kinematic region selection (Only for analysis)


 \bullet $\Delta_{T_{\pi^0}} < 0.5 \, \text{GeV}$


Conclusion

Helmholtz Institute Main

Simulation


PID+CL: Only 2 Very Loose $e^{+/-} + CL(e) > 10^{-3} + CL(e) > 3 \cdot CL(\pi)$

Best Cut Selection

Best cut maximizes the Signal Significance

$$S_{Sg} = rac{N_{Cut}^{Sg}}{\sqrt{N_{Cut}^{Sg} + N_{Cut}^{Bg}}}$$

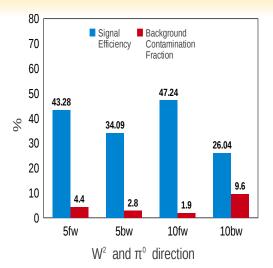
$$\begin{split} & \text{Eff}_{Bg} = \frac{N_{Cut}^{Bg}}{N_{True}^{Bg}}; \, \text{Eff}_{Sg} = \frac{N_{Sg}^{Sg}}{N_{True}^{Sg}}; \\ & N_{True}^{Bg} = 10^6 \cdot N_{True}^{Sg} \end{split}$$

$$S_{Sg} = \frac{\text{Eff}_{Sg} \cdot N_{True}^{Sg}}{\sqrt{\text{Eff}_{Sg} \cdot N_{True}^{Sg} + 10^6 \cdot \text{Eff}_{Bg} \cdot N_{True}^{Sg}}}$$

Definition of the cuts in the backup slides

Best cut: $N_{cut} = 5$

Only 2 tracks (+ and -) and very tight electrons (+ and -) per event

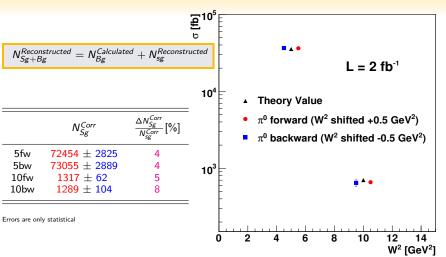

Introduction Simulation Reconstruction

Background contamination fraction

Reconstruction Results Conclusion

Background contamination:

$$\mathsf{Cont}_{Bg} = rac{N_{Reco}^{Bg}}{N_{Reco}^{Bg} + N_{Reco}^{Sg}}$$


To keep a reasonable
Signal Efficiency
one has to accept a certain
Background Contamination

$$\sim 10\%$$
 Still acceptable

Introduction Simulation Reconstruction (Results) Conclusion

$\begin{array}{c} \text{Measurement of } \sigma \text{ and comparison with the} \\ \text{Theory} \end{array}$

s-dependence can be measured with PANDA

Conclusion

- ullet First analysis for the measurement of $ar p p o e^+ e^- \pi^0$ $\overline{P}ANDA$ with in the TDA approach is done.
- A background rejection close to 10⁸ is achievable
- The efficiency and acceptance of the detector are taken into account.
- A reasonable measurement of the cross section could be done in all cases with a relative error lower than 10%.
- A measurement of the TDA seems possible with PANDA.

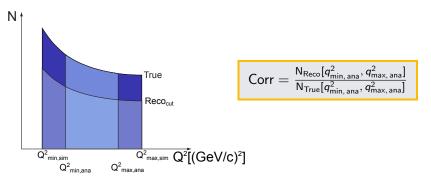
Thank you

Backup Slides

Cut number definitions

- 1: No additional cuts, only event selection cuts involved
- 2 : Only one electron and one positron (2 tracks) with Very Loose probability.
- 3: Only one electron and one positron (2 tracks) with Loose probability.
- 4: Only one electron and one positron (2 tracks) with Tight probability.
- 5: Only one electron and one positron (2 tracks) with Very Tight probability.
- 6: Cut 5 and Cut 17
- 7 : Cut 5 and Cut 18
- 8: Cut 5 and Cut 19
- 9: At least one electron and one positron with Very Loose probability.
- 10: At least one electron and one positron with Loose probability.
- 11 : At least one electron and one positron with Tight probability.
- 12: At least one electron and one positron with Very Tight probability.
- 13 : Cut 12 and Cut 17
- 14: Cut 12 and Cut 18
- 15 : Cut 12 and Cut 19
- 16 : Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than 10^-3
- 17: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 18: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than two times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 19: Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than three times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothesis
- 20 : Cut 16 and Confidence level for the fit with $e^+e^-\pi^0$ hypothesis greater than four times the confidence level of the fit with $\pi^+\pi^-\pi^0$ hypothe

Kinematic region cuts



	$W^2 = 5 \mathrm{GeV^2}$	$W^2 = 10 GeV^2$
Simulation limits	$3.61 < q^2 < 5.29$	$5.76 < q^2 < 9.18$
Analysis limits	$3.8 < q^2 < 4.2$	$7.00 < q^2 < 8.00$

In addition: $\Delta_{\mathcal{T}_{\pi^0}} < 0.5\,\text{GeV}$

Feasibility studies of a measurement of Transition Distribution Amplitudes with $\overline{P}ANDA$

Background contamination fraction

		Forward	П	Backward	
W^2	Signal	Background	Signal	Background	
	Jigilai				
Expected number of true events (Calculated)					
	N ^{Sg} True	N ^{Bg} True	N ^{Sg} True	N ^{Bg} True	
5	150000	$1.5 \cdot 10^{-1}$	150000	$1.5 \cdot 10^{-1}$	
10	6000	$6\cdot 10^9$	6000	$6\cdot 10^9$	
Efficiencies [%] (From Simulations with high statistics)					
	Eff _{Sg}	Eff _{Bg}	Eff _{Sg}	Eff _{Bg}	
5	43.28 ± 0.05	$(2.0 \pm 1.8) \cdot 10^{-6}$	34.09 ± 0.05	$(1.0 \pm 1.4) \cdot 10^{-6}$	
10	47.24 ± 0.05	$(0.9 \pm 1.3) \cdot 10^{-6}$	26.04 ± 0.04	$(2.8 \pm 1.9) \cdot 10^{-6}$	
Reconstructed events after efficiencies (True-Efficiency)					
	N ^{Sg} Reco	N_{Reco}^{Bg} 3023	N ^{Sg} Reco	N _{Reco}	
5	64916	3023	51134	1449	
10	2834	55	1562	166	
Background Contamination [%] $\left(\frac{N_{Reco}^{Bg}}{N_{Reco}^{Bg}+N_{Reco}^{Sg}}\right)$ (Bg/Sg)					
	(ont _{Bg, Fw}	$Cont_{Bg,\;Bw}$		
5	$4.4 \pm 3.7~(\sim 4.7)$		$2.8 \pm 3.8~(\sim 2.8)$		
10	1.9 =	2.7 (< 1.9)	$9.6 \pm 5.8 \; (\sim 10.6)$		

Results w/o Background

Selection cut

Kinematic region cut

$$3.8 < q^2 < 4.2$$
 at $W^2 = 5\, {
m GeV}^2$; $7.00 < q^2 < 8.00$ at $W^2 = 10\, {
m GeV}^2$; $\Delta_{T_{\pi^0}} < 0.5\, {
m GeV}$

Simulation	$N_{True\ w/o\ Bg}$	$N_{Reconstructed\ w/o\ Bg}$	$N_{Corrected\ w/o\ Bg}$	$\epsilon_{\it rel} [\%]$
5 GeV - fw	72263 ±269	30661 ± 175	72732 ± 433	0.6
5 GeV - bw	72405 ± 269	25386 ± 159	73164 ± 488	0.7
10 GeV - fw	$1336\ \pm 37$	662 ± 26	1319 ± 51	3.9
10 GeV - bw	1313 ± 36	394 ± 20	1312 ± 66	5.0

Errors are only statistical

Analysis taking background contamination fraction into account

Carl Zeiss Stiftung

$$N_{Reconstructed} = N_{Background\ fraction} + N_{Reconstructed\ w/o\ Bg}$$

Simulation	$N_{Reconstructed}$	N _{Signal fraction}	$\epsilon_{\it rel}(N_{\it Signal fraction})[\%]$
5fw	31967 ± 179	30544 ± 1190	4
5bw	26067 ± 162	25348 ± 1601	4
10fw	674 ± 26	661 ± 31	5
10bw	429 ± 21	387 ± 31	8
		N _{Corrected}	$\epsilon_{\it rel}(N_{\it Corrected})[\%]$
5fw		72454 ± 2825	4
5bw		73055 ± 2889	4
10fw		1317 ± 62	5
10bw		1289 ± 104	8