The CBM DAQ system

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES David Emschermann CBM CM44 Students day CTU, Prague – 15. September 2024

CBM DAQ in a nutshell

- >mCBM technology testbench
- > Timing and Fast Control System
- Entry Nodes, Processing Nodes, Virgo Cluster
- Core DAQ component: CRI1 and future CRI2

Generic DAQ scheme (LHCb)

The CBM data flow at SIS100

CBM to Green-IT-Cube connection

The CBM readout and control architecture (CRI based)

mCBM – technology testbench

CBM – pre-series detector coponents

Evolution of the readout chain at CBM in the past 5 years

mCBM @ SIS18 - data transport with CRIs

Entry Node configuration - CRI data path

basic configuration of CRI entry nodes for 2021:

- > 2x CRI max 235 Gbps (in)
- > 1x HDR HCA max 120 Gbps (out)

> 13x CRI boards are installed in the CRI rack

The CRI DAQ rack prototype

- > This is the CBM DAQ prototype rack (est. September 2020)
- > all data from mCBM subsystems are transiting here (scale-up 24x for SIS100)

mcbmcri - JTAG server devel09 - 1x TFC-Master

devel08 - 1x CRI

devel07 - 2x CRI devel06 - 3x CRI devel05 - 2x CRI devel04 - 2x CRI devel03 - 1x CRI

devel02 - 1x CRI

this rack hosts the TFC system and FLES Entry Nodes fitted with CRI1

Up to 3 CRI cards and 1 HDR HCA are installed in each Entry Node

Information and usage details are in the Redmine Wiki: https://lxcbmredmine01.gsi.de/projects/mcbm/wiki/CRI_operation

White Rabbit and PTP interface to GSI

At mCBM we are commissioning prototype DAQ components to be used for the day-1 readout of CBM.

- > mCBM is linked to the White Rabbit network of GSI
- > serves as time source to the TFC and PTP master to FLES
- > allows to receive spill on/off information from the accelerator

WR interface added 09/2021

TFC System – Synchronous operation of CRI and attached FEE

- The Timing and Fast Control system (TFC) synchronises the data processing electronics experiment-wide over optical fibres
- > Organised as a hierarchical network for scalability
- Distributes timing information to endpoints (CRI)
- Based on CRI cards

1x TFC-Master commissioned at mCBM in July 2021. To be scaled up with TFC-Submasters for operation at CBM.

TFC-Master CRI

The TFC system needs to synchronize 213 CRI (Online TDR Part I, Table 5.1) to one common time source (WhiteRabbit accelerator interface).

- > Using CRI1:47 with 1 input and 47 outputs
- > 213 / 47 => 5 TFC-Submaster (max 235)
- > 5 / 47 => 1 TFC-Master
- >TFC System consisting of 5+1 = 6 CRI
 - Using CRI1:24 with 1 input and 24 outputs
 - > 213 / 24 => 9 TFC-Submaster (max 216)
 - > 9 / 24 => 1 TFC-Master
 - >TFC System consisting of 9+1 = 10 CRI

The link from the mCBM Entry Nodes to the Processing Nodes in the GC

The link between FLES and Virgo (= GSI IT cluster) inside the GC

This is the connection of the CBM FLES to the Virgo cluster of the GSI IT. The links were upgraded to HDR in 2023.

mCBM optical links to DAQ container and GreenCube

432x multi-mode OM4 fibers, 50 m long:

mCBM cave – DAQ container (installation April 2018 - March 2021) 144x each

144x single-mode OS2 fibers, **300 m** long:

DAQ container – Green Cube (installation in March 2018)

Matching of fiber lenghts between CBM / mCBM and the GreenCube

We will send our mCBM data forward, backward and forward to bridge a similar distance as later with CBM @ SIS100.

Data path performance – FLES input and output data rates

The DAQ rack water cooling system

Day-1 setup:

- > 16 deg C inlet to rack
- > 18 deg C return from rack

- > Connected to the cooling backbone of the TH hall (03/2024)
- > Heat exchanger and pump for secondary circuit cooling two DAQ racks

The CBM DAQ cooling

This cooling setup is a **GAMECHANGER**!!!

DAQ operation during any season

- - Racks were installed in September 2020, but only air cooled with for the first 3 years
 - Cooling configuration in the CBM DAQ identical to racks in the Green IT Cube
 - Significantly lower temperature in the container (FPGA <70°C)</p>
 - Reduction of noise level due to closed doors in the backside

Temperature difference with water cooled racks

> High power load to be tested next week with dry runs

> FPGA temperature reduced to below 70 °C

The Common Readout Interface card (CRI1) aka BNL-712 v2

- All CBM subsystems are using the CRI1 from 2021 to transfer data into the FLES
- Development of BNL for ATLAS (FELIX)
- > CBM owns ~ 32 CRI1 by now (2024)

- Common production with sPHENIX (BNL)
- Some components are EOL since spring 2021
- > CBM@FAIR will need 200 pcs of a successor, the CRI2

The FELIX family

> FLX-182 (2023) and FLX-155 (2024) are both an option for a CRI2!

FLX-182

Three CRI2 hardware options

Common Readout Interface Board (CRI) 2.0 Hardware Specifications

Version 1.4

DAQ Working Group October 23, 2023 There are 3 options to choose from for a CRI2:

- 1) development of a readout board (36 GBT links) according to our own specification
- > 2) FLX-182 development of BNL for ATLAS HL-LHC phase (24 GBT links), CBM will buy 1 board
- > 3) FLX-155 development of BNL for ATLAS HL-LHC phase (48 GBT links), available from autumn 2024
- This is a technology choice, which will define our readout system until ~2035
- > CBM needs to pick one of these options

- > CBM has setup a prototype DAQ chain over the past ~5 years
- > The full data readout and processing chain is being commissioned
- > The mCBM setup needs to be scaled up (x20) for CBM @ FAIR
- >CBM will require 200x PCIe based FPGA cards (CRI2) for day-1
- > A hardware platform for the CRI2 card will be selected till 2025

The end

Thank you for your attention

Bonus slides

mFLES Status

The mFLES setup is our workhorse for FLES development and mCBM

- Sole readout and control system for mCBM
- Demonstrator and development platform for FLES software
- Constantly evolving and growing setup
 - First installation in Green-IT-cube in 2012
- Setup includes all key components needed for CBM@SIS100

mFLES Entry Stage

- Located in the Target Hall mCBM DAQ container next to the mCBM cave
- > White Rabbit uplink to GSI machine timing system
- Multimode fiber connection to detector systems
- > Two TFC master nodes
- > 6 entry nodes with a total of 12 CRIs
- > 300m long-range InfiniBand connection to GC
 - 800 GBit/s bandwidth
- > Nodes can work in two modes:
 - Stand-alone development (develXX)
 - FLES clusters node (enXX)

mFLES Build and Processing Stage

> Build/Processing stage in Green-IT cube Heterogeneous setup 8+4 local processing nodes up to 32 cores/64 threads, 256 GB RAM Head node for infrastructure services and login (cbmfles01) Local buffer storage for data recording 56 TB fast NVMe SSD buffer 320,8 TB HDD buffer > 200 GB/s InfiniBand HDR to mCBM and Virgo Application level routing between separate IB fabrics Local online processing or timeslice forwarding to Virgo cluster

DAQ / Data Transport using CRIs

Single mode fiber (as used between mCBM and Green-IT-Cube)

144x core trunk fibers for mCBM

six 144x core trunk fibers in C17

300 m long OS2 cable: mCBM to Green-IT-Cube about 1/3 of the length required at SIS 100 / FAIR

endpiece: ~ 1m long up to 8 cm in diameter fiber: about 1000m long 2 cm in diameter

endpiece: ~ 1m long up to 8 cm in diameter

FAIR construction site – October 2021

The end

