PANDA Readout Time Structure

Lars Schmitt, GSI

PANDA ST Session, CM XLIII, GSI, Dec 11th 2012

PANDA DAQ Overview

Time Structure

SODA Operation

Conclusions

PANDA DAQ Overview

Self triggered readout

- Components:
 - Time distribution system
 - Intelligent frontends
 - Powerful compute nodes
 - High speed network
- Data Flow:
 - Data reduction
 - Local feature extraction
 - Data burst building
 - Event selection
 - Data logging after online reconstruction

Programmable Physics Machine

p a nd a

PANDA DAQ Overview

Time Structure

- HESR is a storage ring
 - Debunched particle flux
 - No microscopic time structure
- Energy loss in target
 - Cavity for compensation: *barrier bucket*
 - Gap needed to re-accelerate anti-protons
 - Induces time structure
- HESR time structure:
 - Circumference 2 µs
 - Acceleration gap 20%, i.e. 400 ns
 - One HESR cycle is called *burst*
- Grouping 256 bursts into one *super burst*
 - Data of one super burst to arrive at one destination

SODA Operation

- SODA provides:
 - Stable clock for all FEE modules
 - jitter < 20 ps
 - 155.55 MHz
 - Synchronisation of DAQ by regular global resets
 - Structuring readout signals
 - Multiplexing via Concentrators and/or passive splitters
- FEE timestamps
 - Coarse time stamp 6 ns ~ clock
 - TDC measures fine time w.r.t. clock
 - ADC FEE reconstructs fine time w.r.t. clock
- Synchronisation
 - Time bits correlated to frequency of global resets
 - Suitable max. frequency: every burst

SODA Output Signals

Igor Konorov's SODA design

- Clock 155.52 MHz LVDS@2.5V
 - Fulfills jitter requirements
- Signals synchronous to SODA clock, LVTTL@2.5V
 - Global Reset
 - Burst, '1'- Burst ON
 - Run Active, '1' Run Active
 - Super Burst, pulse at start of new SBurst
 - Destination Enable, '1' enable
 - Trigger, pulse signal(optional signal)
 - JTAG (optional)
 - 6 reserved bits
- Data delivered via high speed serial link, Aurora protocol:
 - Burst Time Tag, 8 bits, time within one burst
 - Burst Number, 8 bits, burst number within super burst
 - Super burst Number, 24(32) bits, super burst number within Run

Conclusions

- Data flow:
 - All pieces of data have a time stamp
 - Buffering to accommodate latencies within the same FE/concentrator
 - No common signal marking individual events
- Key questions to DAQ
 - Full event building before selection?
 - Sub-event building for software trigger?
 - Tracking needed for event building?
- Design questions to SODA
 - Control signals?
 - Return lines?
 - Integration into DAQ fibres?
 - Soft core or mezzanine?
 - Passive or active multiplexing?

