CONTINUOUS ONLINE TRACKING FRAMEWORK

Sean Dobbs

(Northwestern U.)

M. Mertens, J. Ritman, P. Wintz

(FZ Jülich)

GSI, 11 Dec. 2012

Motivation

- PANDA is planned to run with a quasi-continuous beam and triggerless readout at high rate (up to 2x10⁷ events/s)
- "Interesting" events are many orders of magnitude more rare than the "uninteresting" events, but often have similar topologies.
- □ Software trigger needs well reconstructed tracks
- □ This creates a demanding situation for online tracking
 - Needs to be robust against low-p_T tracks, displaced vertices, decays-inflight, etc.
 - Need to determine which particles come from which event.

Setting the Scale of the Problem

LHCb

- **pp** collisions, $\sqrt{s} = 7(8)$ TeV @ 20 MHz
- Hardware LO triggers on muons, calorimeter energy, reduces event rate to 1 MHz (limited by FEE, upgrade plans to read out at full rate)
- HLT runs offline algorithms (or slightly simplified versions) on >15000 processors (>25000 instances), reducing event rate to 3 kHz

How does PANDA compare with LHCb?

- □ PANDA: $p\bar{p}$ collisions, $\sqrt{s} = 2.5 5$ GeV
 - Event rate from FEE is an order of magnitude higher
 - PANDA: 20 MHz, LHCb 1 MHz
 - Individual channels in PANDA have < 1 MHz</p>
 - Event complexity is an order of magnitude lower
 - Average number of tracks/event: PANDA ~5, LHCb ~70
- Data rate for both experiments is comparable
- PANDA has more complicated geometry
 - Target spectrometer in addition to forward spectrometer
- No a priori knowledge of event timing
- Comparable online processing resources

Continuous Online Tracking

- □ The constraints on online tracking are:
 - Triggerless readout
 - High event rate
 - Continuous beam
 - Different track topologies
- Various types of tracks must be reconstructed on a non-event-based, "continuous", basis
- Algorithms should be selected which maximize speed and reconstruction efficiency while using a reasonable amount of computing resources.

Continuous Online Tracking Framework

- Algorithms must be tested with time-based simulations and benchmarked against key physics channels
- To this end, we have developed a prototype framework for running and evaluating tracking algorithms
 - Tests continuous tracking data flow
 - Development has focused on STT & MVD detectors

Framework for Algorithm Development

- Reads in hits from time-based simulation
- Runs series of algorithms and keeps running track of results
 - $\blacksquare \text{ Hits} \rightarrow \text{Tracks} \rightarrow \text{Events}$
 - Standard classes are wrapped or extended to store onlinespecific information, e.g., t₀
- □ FairRunAna handles ROOT I/O, geometry
 - Most detectors do local clustering, simple geometry needed for straw tubes due to long drift times
- Simple event display to facilitate development
- Example: Triplet finder

Summary

- PANDA online tracking needs to reconstruct a variety of different track topologies in a demanding environment.
- Algorithms must be tested with realistic, time-based simulations
- A framework for running and evaluating these algorithms is under development
 - Short term: Standardize and make available in SVN
 - Future: Integration with other infrastructure (Event Dispatcher), execution on GPUs & Compute Nodes
 - Other detectors easily integrated (forward tracking?)
 - We look forward to contributions from many others!

