

Online Software Trigger @ PANDA

Donghee Kang

Institut für Kernphysik, Universität Mainz

- Update of software trigger scheme
- Full chain MC simulation
- Outlook

PANDA collaboration meeting, GSI, 11 Dec. 2012

investigate the scheme of online trigger by studying benchmark channels

- a standalone program (generator level) has been used to estimate event rate for signal and reduction rate for background with input parameters : tracking efficiency, momentum resolution, mass interval, PID information
- physics benchmark channels

134 data sets with both signal & background from the PANDA physics book EvtGen generator are used to test the signal efficiency : observed enough selection power for signal event

background study using DPM generator :

toal 22 sets with beam momentum $p_{min} = 1.431 \text{ GeV/c}$ and $p_{max} = 15.0 \text{ GeV/c}$

• require background reduction rate 1/1000 with software trigger in total

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Parameters I

- apply online tracking resolution by Yutie's study, which is a level of 3 5%
- 12 selection algorithms scan events contain signal in parallel
- \bullet Mass filtering by 2σ mass window for each algorithm/resonance
- application of p_T cut on D meson ($p_T < 300 MeV/c$)

selection can be added with various algo. $\Lambda(p\pi), \Lambda_c^+(pK^-\pi^+)$, etc.

HANNES GUTENBERG

- PID application in online trigger is essential
- assume 80% efficiency & 5% misidentification of PID selector for each particle
- misIDs are defined as a proportion of fallacious PID selector for certain particle, that can make combinatorial background through other particle list

PID efficiencyPurity & Impurity
$$\varepsilon = P(e \mid e) = \frac{\# \text{ of accepted } e \text{ by } e \text{ selector}}{\# \text{ of reconstructed } e}$$
 $impurity = 1 - purity$ $= 1 - \frac{P(e \mid e)}{[P(e \mid e) + P(e \mid \mu) + P(e \mid \pi) + P(e \mid K) + P(e \mid p)]}$ misID of e

$$\mu_{misID}^{e} = P(\mu \mid e) = \frac{\# \text{ of accepted } e \text{ by } \mu \text{ selector}}{\# \text{ of reconstructed } e} \qquad \pi_{misID}^{e} = P(\pi \mid e) = \frac{\# \text{ of accepted } e \text{ by } \pi \text{ selector}}{\# \text{ of reconstructed } e}$$

$$K_{misID}^{e} = P(K \mid e) = \frac{\# \text{ of accepted } e \text{ by } K \text{ selector}}{\# \text{ of reconstructed } e} \qquad p_{misID}^{e} = P(p \mid e) = \frac{\# \text{ of accepted } e \text{ by } p \text{ selector}}{\# \text{ of reconstructed } e}$$

DPM background

HANNES GUTENBERG

- during the study on the event rate, inelastic and elastic event given by DPM cross section are separated in the event selection
- scaled elastic and inelastic event by event selection has been separately normalized and combined to estimate the event rate

MHOLT7

Online event rate

HELMHOLTZ

Background reduction rate with 12 algorithms according to DPM

systematic uncertainty

evaluated by different ratio between hadronic and coulomb part, which can adjust with cut off parameter θ_{cutoff} in DPM generator

background reduction rate ~ 10^{-1}

event rate : 20 MHz \rightarrow 0.7 MHz @ 15 GeV/c beam momentum

test software trigger scheme with full chain MC simulation

- 6 EvtGen signal data and 6 DPM background data
 - 0.5 $1.5~\mathrm{M}$ events / channel using PANDAroot v.17680

DPM event (only inelastic)
cms = 2.230 GeV/c
3.077 GeV/c
3.770 GeV/c
3.872 GeV/c
4.040 GeV/c
5.474 GeV/c

- 5 selection algorithms simultaneously $\rightarrow 3\sigma$ mass window \rightarrow count event $D^0(K\pi) \quad D^{\pm}(K\pi\pi) \quad J/\psi(e^+e^-) \quad J/\psi(\mu^+\mu^-) \quad \phi(K^+K^-)$
- online tracking resolution is the same as like offline reconstruction value no $p_{\rm T}\,$ cut on D sector in the full chain MC simulation
- apply global PID probability for each charged track

HANNES GUTENBERG

 $\overline{p}p \rightarrow \psi(3770) \rightarrow D^+D^- \rightarrow K^-\pi^+\pi^+K^+\pi^-\pi^ \times 10^3$ # of evt. 900 reconstruced w/o PID selected 800 MC truth 700 $D^{\pm} \rightarrow K^{\mp} \pi^{\pm} \pi^{\pm}$ 600 500 400 300 200 100 8.5 1.5 2 2.5 3.5 1 3 **m(K**⁻π⁺π⁺) [GeV/c]

blue distribution : reconstructed D mass with matching MC truth red distribution : reconstructed D from the combination of all charged track GEMEINSCHAF

HELMHOLTZ

• clean up clone tracks found in the list of particle candidates

 $particle_{clone} (track_1, track_2) = |\Delta px, \Delta py, \Delta pz, \Delta E| < 0.1 MeV$

• compare D^{\pm} signal between two different beam momentum

 $\overline{p}p \to \psi(3770) \to D^+ D^- \to K^- \pi^+ \pi^+ K^+ \pi^- \pi^-$

 $\sqrt{s} = 3.770 \, \text{GeV/c}$

ANNES GUTENBERG

 $\overline{p}p \to D^+D^- \to K^-\pi^+\pi^+K^+\pi^-\pi^-$

 $\sqrt{s} = 5.474 \,\mathrm{GeV/c} \Leftrightarrow p_{\overline{p}} = 15 \mathrm{GeV/c}$

selection power and track quality looks similar \rightarrow same selection might be applied

Signal (EvtGen) production

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

need a calibration for the reconstructed electron energy

JOHANNES GUTENBERG

8.9

1.1

1

1.2

50

8.5

1.5

1

2.5

2

3.5

m(K⁻π⁺) [GeV/c]

3

1.3

m(K⁺K⁻) [GeV/c]

1.4

Signal (EvtGen) production

MHOIT7

 compare invariant mass distribution with different global PID cuts

IOHANNES GUTENBERG UNIVERSITÄT MAIN

of evt.

#

200

180

160

140

120

100

80

60

40

20

8.5

 Prob. cut has to be tuned according to figure of merit

$$\overline{p}p \rightarrow \psi(3770) \rightarrow D^+D^- \rightarrow K^-\pi^+\pi^+K^+\pi^-\pi^-$$

Universität Mainz 14/17

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

reconstructed w/o PID = all combinations from all charged tracks

Background reduction

Compare background reduction between simplicity and complexity way

WINES GUTENBERG

- still existing a lot of rooms for improvement of tracking and PID
- total 22 DPM production has been already finished more signal MC(EvtGen) including neutral tracks will be analyzed
- at present 5 selection algorithms \rightarrow 12 selection algorithms with kinematic cuts in the full chain MC simulation
- fraction of misidentification found in the simulation will be applied to standalone online software trigger package
- analysis on event mixing is in progress
- assume that time order simulation should start @ 2013

Backup

Physics channel

HELMHOLTZ

Helmholtz-Institut Mainz

Production		Production	
$\bar{p}p \rightarrow J/\psi \pi^+\pi^- \rightarrow e^+e^-(\mu^+\mu^-)\pi^+\pi^-$	$h_c, \psi(2S), X, Y$	$\bar{p}p \to J/\psi\omega \to e^+e^-\pi^+\pi^-\pi^0$	Y(3940)
$\bar{p}p \rightarrow J/\psi \pi^0 \pi^0 \rightarrow e^+ e^- (\mu^+ \mu^-) 4\gamma$	Y	$\bar{n}n \rightarrow \psi' \pi^0 \rightarrow e^+ e^- \pi^+ \pi^- \pi^0$	
$\bar{p}p ightarrow \chi_{c1} \gamma ightarrow J/\psi \gamma \gamma ightarrow e^+ e^- (\mu^+ \mu^-) \gamma \gamma$	$\psi(2S),X,Y$	$\bar{p}p \rightarrow J/\eta, \alpha \pi^0 \rightarrow e^+ e^- \pi^+ \pi^- \pi^0$	
$\bar{p}p \rightarrow \chi_{c2}\gamma \rightarrow J/\psi\gamma\gamma \rightarrow e^+e^-(\mu^+\mu^-)\gamma\gamma$	$\psi(2S),X,Y$	$\bar{p}p \rightarrow J/\psi p \pi \rightarrow e^+ e^- \pi^+ \pi^0 \pi^-$	
$\bar{p}p \rightarrow J/\psi\gamma \rightarrow e^+e^-(\mu^+\mu^-)\gamma$	χ_{c1}, χ_{c2}, X	$pp \rightarrow J/\psi p \pi \rightarrow e e \pi \pi \pi$	
$\bar{p}p \rightarrow J/\psi\eta \rightarrow e^+e^-(\mu^+\mu^-)\gamma\gamma$	$\eta_c(2S), \psi(2S), X, Y$	$pp \rightarrow p\pi \cdot \pi \pi \rightarrow \pi \cdot \pi \pi \cdot \pi \pi$	
$\bar{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-$		$pp \to \rho \cdot \pi \cdot \pi \pi \to \pi \cdot \pi^- \pi^- \pi^- \pi^-$	
$\bar{p}p \rightarrow \pi^+\pi^-\pi^0\pi^0 \rightarrow \pi^+\pi^-\gamma\gamma\gamma\gamma$		$pp \to \omega \pi^+ \pi^- \pi^- \to \pi^+ \pi^- \pi^0 \pi^+ \pi^-$	
$\bar{p}p ightarrow J/\psi\eta\pi^0 ightarrow e^+e^-\gamma\gamma\gamma\gamma\gamma$		$\bar{p}p \to \psi \pi^+\pi^- \to e^+e^-\pi^+\pi^-\pi^+\pi^-$	Y(4320)
$\bar{p}p ightarrow J/\psi\omega\pi^0 ightarrow e^+e^-\pi^0\gamma\gamma\gamma$		$\bar{p}p \to \pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$	
$\bar{p}p ightarrow \pi^+\pi^-\pi^0 ightarrow \pi^+\pi^-\gamma\gamma$		$\bar{p}p \rightarrow \phi\phi \rightarrow K^+K^-K^+K^-$	$f_2(2230)$
$\bar{p}p \to \pi^+\pi^-\eta \to \pi^+\pi^-\gamma\gamma$		$\bar{p}p \rightarrow \text{generic DPM}$	
$\bar{p}p \rightarrow J/\psi \pi^0 \gamma \rightarrow e^+ e^- \gamma \gamma \gamma$		$\bar{p}p \rightarrow D_s^{\pm} D_{s0}^* (2317)^{\mp} \rightarrow \phi \pi^{\pm} + anything$	$D_{s0}^{*}(2317)$
$\bar{p}p \rightarrow J/\psi \eta \gamma \rightarrow e^+ e^- \gamma \gamma \gamma$		$\bar{p}p \rightarrow \text{generic DPM}$	00()
$\underline{\bar{p}p} \to J/\psi\eta\eta \to e^+ e^- \gamma \gamma \gamma \gamma$		$\bar{p}p \rightarrow D^{\pm}_{\circ}D^{*}_{\circ}(2317)^{\mp} \rightarrow anything + D^{\mp}_{\circ}\pi^{0} \rightarrow anything + \phi\pi^{\mp}\pi^{0}$	
$pp \rightarrow \eta_c(2S)\gamma \rightarrow \gamma\gamma\gamma$	h_c	$\bar{p}p \rightarrow D^{\pm}_{-} D^{\mp}_{-} \pi^0 \rightarrow \phi \pi^{\pm} D^{\mp}_{-} \pi^+ \pi^-$	
$pp \to \pi^0 \pi^0 \to \gamma \gamma \gamma \gamma$		$\bar{p}p \rightarrow D^{\pm}D^{\mp}\pi^{0} \rightarrow \phi\pi^{\pm}D^{\mp}\pi^{0}\pi^{0}$	
$pp \to \pi^{o} \gamma \to \gamma \gamma \gamma$		$\bar{p}p \rightarrow D_s^* D_s^* \pi^0 \rightarrow \phi \pi^{\pm} D^{*\mp} \pi^0$	
$pp \rightarrow \pi^{\circ} \eta \rightarrow \gamma \gamma \gamma \gamma \gamma$		$\frac{pp}{r} + \frac{D_s}{D_s} \frac{D_s}{r} + \frac{1}{r} + \frac{1}{r} = 0$	TT
$pp \rightarrow \eta\eta \rightarrow \gamma\gamma\gamma\gamma$		$pp \to \Xi \ \Xi^-\pi^0 \to \Lambda\pi^+\Lambda\pi^-\pi^0 \to p\pi^+\pi^+p\pi^-\pi^-\pi^0$	Hyperon
$\frac{pp \to \pi^\circ \eta^{\prime} \to \gamma \gamma \gamma \gamma}{\bar{z}_{-} \to z_{-} \to z_{-}$	L	$pp \rightarrow \text{generic DPM}$	
$pp \to \eta_c \gamma \to \phi \phi \gamma \to \kappa + \kappa - \kappa + \kappa - \gamma$ $\bar{z}_{r} \to V^+ V^- V^+ V^- \tau^0 \to V^+ V^- V^+ V^- \tau^0$	n_c	$\overline{p}p \to \Lambda\Lambda\pi^+\pi^-\pi^0 \to \overline{p}\pi^+\pi^+p\pi^-\pi^-\pi^0$	
$pp \to K^+ K^- K^- K^- \pi^0 \to K^+ K^- K^+ K^- \gamma \gamma$		$\bar{p}p \to \overline{\Sigma}^+(1385)\Sigma^-(1385)\pi^0 \to \overline{\Lambda}\pi^+\Lambda\pi^-\pi^0 \to \overline{p}\pi^+\pi^+p\pi^-\pi^-\pi^0$	
$pp \rightarrow \phi K^{+} K^{-} \pi^{-} \rightarrow K^{+} K^{-} K^{+} K^{-} \gamma^{-} \gamma^{-}$		$\bar{p}p \to p\bar{p}\pi^+\pi^-\pi^+\pi^-\pi^0$	
$pp \to \phi\phi\pi \to K^+K^-\pi^+\pi^-\pi^0 \to K^+K^-K^+K^-\gamma\gamma$		$\bar{p}p \to \overline{\Lambda}\Lambda \to \overline{p}\pi^+p\pi^-$	Hyperon
$\frac{pp}{\bar{p}p} \rightarrow \frac{p}{\bar{n}} \frac{p}{\bar{p}} \rightarrow \frac{p}{\bar{n}} \frac{p}{\bar{p}} \rightarrow \frac{k}{\bar{n}} \frac{p}{\bar{n}} \frac$	2/2(3770)	$\bar{n}p \to \overline{\Xi}^+ \Xi^- \to \overline{\Lambda}\pi^+ \Lambda \pi^- \to \overline{p}\pi^+ \pi^+ p \pi^- \pi^-$	Hyperon
$\bar{p}p \rightarrow D D \rightarrow M \pi \pi \pi \pi \pi \pi \pi \pi \pi$ $\bar{p}p \rightarrow D^{*+}D^{*-} \rightarrow D^{0}\pi^{+}\overline{D^{0}}\pi^{-} \rightarrow K^{-}\pi^{+}\pi^{+}K^{+}\pi^{-}\pi^{-}$	$\psi(0110)$	$\bar{p}p \rightarrow p\bar{p}\pi^+\pi^-$	1.5 peren
$\bar{p}p \rightarrow generic DPM$	φ(1010)	$\bar{p}p \rightarrow \bar{p}pn n$ $\bar{n}p \rightarrow \bar{\Lambda}\Sigma^0 \rightarrow \bar{p}\pi^+ p\pi^- \pi^0$	
$\bar{p}p \rightarrow 3\pi^+ 3\pi^- \pi^0$		$\bar{p}p \rightarrow \overline{\Lambda}\Sigma \qquad p \pi p \pi \pi \pi$ $\bar{p}n \rightarrow \overline{\Lambda}\Sigma (1385) \rightarrow \overline{p}\pi^+ n\pi^- \pi^0$	
$\bar{p}p \rightarrow 3\pi^+ 3\pi^-$		$pp \rightarrow \Lambda \Sigma(1585) \rightarrow p\pi^{-}p\pi^{-}\pi^{-}$	
$\bar{p}p \rightarrow K^+ K^- 2\pi^+ 2\pi^-$		$\bar{p}p \to \Sigma \ \Sigma^0 \to \bar{p}\pi^+ \gamma p\pi^- \gamma$	
$\overline{p}p \to \widetilde{\eta}_{c1}\eta \to \chi_{c1}\pi^0\pi^0\eta \to J/\psi\gamma\pi^0\pi^0\eta$	$\widetilde{\eta}_{c1}(4286)$	$\bar{p}p \rightarrow \text{generic DPM}$	
$\bar{p}p \rightarrow \chi_{c0} \pi^0 \pi^0 \eta \rightarrow J/\psi \gamma \pi^0 \pi^0 \eta$		$\bar{p}p \to \overline{\Sigma}^+(1385)\Sigma^-(1385) \to \overline{\Lambda}\pi^+\Lambda\pi^- \to \overline{p}\pi^+\pi^+p\pi^-\pi^-$	
$ar{p}p ightarrow \chi_{c1} \pi^0 \eta \eta ightarrow J/\psi \gamma \pi^0 \eta \eta$		$\bar{p}p \rightarrow D^0 \overline{D}^{*0} \rightarrow K^- \pi^+ K^+ \pi^- \pi^0$	X(3872)
$\bar{p}p \rightarrow \chi_{c1} \pi^0 \pi^0 \pi^0 \eta \rightarrow J/\psi \gamma \pi^0 \pi^0 \pi^0 \eta$		$\bar{p}p \to \pi^+\pi^-\pi^+\pi^-$	()
$\bar{p}p ightarrow J/\psi \pi^0 \pi^0 \pi^0 \eta$		$\bar{p}p \rightarrow generic DPM$	
$\overline{p}p \to \widetilde{\eta}_{c1}\eta \to D^0 \overline{D}^{*0}\eta \to K^- \pi^+ \pi^0 K^+ \pi^- \pi^0 \pi^0 \eta$	$\tilde{\eta}_{c1}(4286)$	$\overline{n}\overline{p} \rightarrow e^+e^-$	EME
$\bar{p}p \to D^0 \overline{D}^{*0} \pi^0 \to K^- \pi^+ \pi^0 K^+ \pi^- \pi^0 \pi^0 \pi^0$		$\bar{n}p \rightarrow e^+ e^- \pi^0$	EMF
$\bar{n}n \to D^0 \overline{D}^{*0} n \to K^- \pi^+ \pi^0 \pi^0 K^+ \pi^- \pi^0 \pi^0 n$		$\bar{p}p \rightarrow \pi^+\pi^-$	1.1111
$pp \rightarrow D D \eta \rightarrow R h \land h \land h \land h \land h \land \eta$		$pp \rightarrow \pi^{-} \pi^{-} \pi^{0}$	
$pp \to D^{\circ}D^{\circ}\eta \to K^{-}\pi^{+}\pi^{\circ}\pi^{\circ}K^{+}\pi^{-}\pi^{\circ}\pi^{\circ}\pi^{\circ}\eta$		$pp \rightarrow \pi^+ \pi^- \pi^-$	

software trigger efficiency

JOHANNES GUTENBERG UNIVERSITÄT MAINZ HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

Efficiency of online physics trigger for 134 data sets (9 algorithms + Λ included)

Physics Channel #

possible way to get an improvement for signal selection and background reduction

HELMHOLTZ

Application of p_T cut in D selection

kinematic cut

HELMHOLTZ

Application of p_T cut in D selection

HELMHOLTZ

Application of p_T cut in D selection

9 algorithms w/o lambda

12 algorithms w/o lambda

Signal (EvtGen) production

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

IGIU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

PID cut : Prob.(*e*, μ , π , *K*, *p*) > 0.5

HELMHOLTZ

Helmholtz-Institut Mainz

GEMEINSCHAFT

misID for electron

ANNES GUTENBERG

 $0.2 ; <math>1^{\circ} < \theta < 148^{\circ}$ applied cut Prob. $(e, \mu, \pi, K, p) > 0.1$ clone tracks are cleaned up $\mu_{misID}^{e} = \frac{\# \text{ of accepted } e \text{ by } \mu \text{ selector}}{\mu \text{ selector}}$

of reconstructed e

misID for electron

IANNES GUTENBERG UNIVERSITÄT MAII

> 0.2 $applied cut Prob.<math>(e, \mu, \pi, K, p) > 0.1$ clone tracks are cleaned up $\mu_{misID}^{e} = \frac{\# \text{ of accepted } e \text{ by } \mu \text{ selector}}{\# \text{ of reconstructed } e}$

HELMHOLTZ GEMEINSCHAFT Helmholtz-Institut Mainz

misID for kaon

IANNES GUTENBERG UNIVERSITÄT MAII

> $0.2 ; <math>1^{\circ} < \theta < 148^{\circ}$ applied cut Prob. $(e, \mu, \pi, K, p) > 0.1$ clone tracks are cleaned up $\mu_{misID}^{K} = \frac{\# \text{ of accepted } K \text{ by } \mu \text{ selector}}{\mu \text{ selector}}$

of reconstructed K

HELMHOLTZ

misID for kaon

ANNES GUTENBERG

 $0.2 ; <math>1^{\circ} < \theta < 148^{\circ}$ applied cut Prob. $(e, \mu, \pi, K, p) > 0.1$ clone tracks are cleaned up $\mu_{misID}^{K} = \frac{\# \text{ of accepted } K \text{ by } \mu \text{ selector}}{\mu \text{ selector}}$

of reconstructed K

- positive and negative particle are similar
- strong momentum, theta, and cut value of $Prob.(e,\mu,\pi,K,p)$ dependence

misIDs positive particle @ PANDAroot						misIDs negative particle @ PANDAroot							
P(e, μ, π, K, p) > 0.1 PID reconstructed					$P(e,\mu,r)$	$\tau, K, p) > 0.1$		PID r	econstr	ucted			
_		e^+	$\mu^{\!+}$	$\pi^{\!+}$	K^+	р			e-	μ^{-}	π^{-}	K-	p
MC input	e^+	91.7	7.9	13.4	7.2	8.4		е-	91.7	7.8	13.1	7.7	9.6
	$\mu^{\!+}$	7.3	84.6	30.0	6.9	9.2	~	μ	7.3	84.6	31.6	6.6	7.8
	$\pi^{\!+}$	9.6	31.0	80.0	14.3	13.5	IC inpu	π^{-}	9.0	30.4	81.1	14.3	14.6
	K^+	6.6	21.4	36.0	59.4	20.4	ıt	<i>K</i> –	6.6	16.3	40.8	61.1	21.1
	p	7.2	11.3	18.2	14.2	87.3		\overline{p}	13.6	9.6	23.0	14.6	76.1

= PID efficiency,

off-diagonal =misID

cleaned up clone tracks

Multiplicity for inelastic event

HELMHOLTZ

Multiplicity in generator level (DPM 22 data samples)

IOHANNES GUTENBERG

UNIVERSITÄT MAIN

Multiplicity for inelastic event

Multiplicity in the reconstruction level for $p_{\overline{p}} = 15 \text{GeV/c} \Leftrightarrow \sqrt{s} = 5.474 \text{ GeV}$ before clean up clone tracks

• 2 times larger than generated

HANNES GUTENBERG

• At $p_p = 1.413 \text{ GeV/c}$ multiplicity down to $< n_{pos} > = 1.98 \& < n_{neg} > = 1.96$ • 10 times larger than generated

• At $p_p = 1.413 \text{ GeV/c}$ neutral track down to $< n_{neut} > = 14.7$