

EUROPEAN SPALLATION SOURCE

ESS towards First Neutron Production

HÅKAN DANARED, FAIR/GSI, 2 JULY 2024

Outline of presentation

- 1. Introduction to ESS
- 2. Why a neutron spallation source
- 3. Accelerator
- 4. Target
- 5. Instruments

Linear proton accelerator:

- Energy: 2 GeV
- Current: 62.5 mA
- Pulse length: 2.86 ms
- Rep. rate: 14 Hz
- Average beam power: 5 MW
- Currently funded: 2 MW

larget station:

- Rotating W target
- 36 sectors
- 23 rpm
- Cooled by He gas

42 beam ports

Instruments:

- 5-6 at BOT (beam on target)
- 15 in construction budget
- 22 in total scope

2. and

 Plans for programme in fundamental physics

> Estimated project cost: 3685 M€ Based on EV close to 80% complete Contingency on ETC approx. 15%

The ESS journey

Accelerator G01 Accelerator Tunnel G02 Klystron Gallery G04 Cryo Compressor Building Target D02 Target Building **Experimental Halls** D01 Experimental Hall 1 D03 Experimental Hall 2 D04 Labs, Hall 2 D05 Substation D06 Substation D07 Labs, Hall 2 D08 Labs, Hall 2 Experimental Hall 3 E01 Beam Line Gallery E02 Labs, Hall 3 E03 E04 Labs, Hall 3 E05 Substation Utilities H01 Central Utility Building H05 Substation H06 Substation H09 Waste Building H10 Sprinkler Building Service Logistic Center F03 F04 Entrance Building Campus B01 Office Building

B02 Lab/Workshop Building

ERIC with 13 member states

Host countries Sweden and Denmark

Construction 47.5% Cash investment ~ 97% Operations 15%

Non-host member countries

Construction 52.5% In-kind deliverables ~ 70% Operations 85%

In-Kind Partners for the Accelerator

Providing services and components for >50% of the construction budget

In-kind (main contributions)

ATOMKI (RF-Local Protection System) CEA (RFQ, Elliptical cavities and cryomodules, Diagnostics) CNRS (Spoke cavities and cryomodules, Cryogenic distribution) Cockcroft Inst (Diagnostics) Daresbury Lab (High-beta cavities, Vacuum) Elettra (Spoke RF, Magnets, Magnet power supplies, Diagnostics) ESS-Bilbao (Medium-energy beam transport, Warm-linac RF) Huddersfield Univ (RF distribution system) IFJ PAN (Installation services) INFN Catania (Ion source, Low-energy beam transport) INFN Legnaro (Drift-tube linac) **INFN Milan (Medium-beta cavities)** Lodz UT (Low-level RF) NCBJ (LLRF, Gamma blockers) Tallinn UT (Modulator prototype, Diagnostics) Univ Bergen (Seconded staff) Univ Oslo (Diagnostics) Warsaw UT (Low-level RF) Wroclaw UST (Cryogenic distribution system)

Collaboration contracts

Aarhus Univ (Beam delivery system) DESY (Diagnostics) Lund Univ (Low-level RF, RF) Uppsala Univ (Spoke cryomodule test stand) Univ West Trollhättan (Diagnostics)

Neutron science

Håkan Danared

FAIR/GSI, 2 July 2024

Håkan Danared

Why neutrons?

Charge neutral: Deeply penetrating, probe bulk of materials, even inside cryostats, magnets,...

Nuclear interaction:

Scattering cross section depends on isotope, not Z, and is high for hydrogen. Sensitivity to light elements.

Mass: Thermal neutrons have wavelengths similar to interatomic distances and energies of elementary excitations of solids.

Spin: Makes neutrons a probe for magnetic structure.

Neutrons

X-rays

Н

Li

С

0

S

Mn

Zr

Cs

High-power 5 MW proton accelerator 352.21 MHz 704.42 MHz A2T 178.9 m Target 2.5 m 4.0 m 38.9 m ← 76.7 m → 55.9 m HEBT Dump DMPL 75 keV 3.6 MeV 90 MeV 216 MeV 571 MeV 2000 MeV

- Designed and built by a collaboration of 23 European institutes and universities
- More than 50% of total accelerator budget delivered as in-kind contributions
- ESS responsibility to install, test, and commission in-kind deliverables
- Beam On Target milestone requires capability for 1.4 MW at 571 MeV with nominal pulse structure
- Start Of User Operation requires capability for 2 MW at 870 MeV with nominal pulse structure*
- Remaining cryomodules will be installed but their RF sources will require additional funding
- Full scope is 5 MW at 2 GeV with 2.86 ms long pulses at 14 Hz

*) Since we are ahead of the plan with the accelerator, we got approval last autumn for installation of additional cryomodules before BOT

FAIR/GSI, 2 July 2024

Ion Source and LEBT

RFQ and DTL

Superconducting linac, spoke section

Superconducting linac, elliptical section

FAIR/GSI, 2 July 2024

Klystron gallery: RF sources

Cryoplants and cryogenics

Håkan Danared

FAIR/GSI, 2 July 2024

Accelerator installation

- 869 racks to fill
- > 15,000 m cable trays
- > 900,000 m cables
- 49,804 cable terminations
- 17,496 m cooling-water pipes
- 5,000 m waveguides with 450,000 bolts
- Steel and concrete radiation sheilding

All carefully planned and documented, performed with strictest quality control

Håkan Danared

10⁻³

10.2

Spallation

Spall

10-1

10.2

10^{.3}

10

10

10^{.6}

10-4

Neutron Yield (Integrals normalized to 1)

1. To break into fragments or small pieces

Fission

10-1

E (MeV)

• Spallation (800 MeV

protons (W target)

10

2. To reduce, as irregular blocks of stone, to an approximately level surface by hammering

1000

100

D. Král, Brno

Spallation using proton accelerator 30+ neutrons per event, approx. proportional to

in a reactor

event

2-3 neutrons per

Target monolith

Rotating solid tungsten target 36 sectors 11 tonnes (3 tonnes of tungsten) 3 kg/s gaseous helium at 3 bar 40/240°C inlet/outlet temperature

Energy per pulse at 5 MW: 357 kJ

Target wheel and moderator/reflector

Target vessel, neutron beam ports

Proton beam window plug

Target wheel installed

Moderator/reflector

Target wheel hanging from high-bay crane

Active cells

Maintenance cell

Process cell

Neutron moderators

Long pulse/short pulse

time

Neutron instruments

With lead partners for construction

ODIN

Optical and Diffraction Imaging with Neutrons

Imaging of macroscopic objects

- Coffee pot, car engine
- Batteries: How does the lithium move
- Steel: Grains, stresses

ТЦПТ

TECHNISCHE UNIVERSITÄT MÜNCHEN

• Formerly "radiography", but energyselective imaging with time-of-flight

Instrument Class Imaging Moderator **Bispectral** Primary Flightpath 50 m (to pinhole) Secondary Flightpath 2 – 14 m (pinhole to detector) Wavelength Range 1 – 10 Å 20 x 20 cm² Field of View L/D Ratio Tunable 300 – 10000 Incident Beam Polarisation Optional Polarisation Analysis Optional 4.5 Å Bandwidth at 14 Hz White Beam Mode Flux at Sample at 2 MW 1.2 x 10⁹ n s⁻¹ at 10 m, L/D = 300 Spatial Resolution < 10 um TOF Mode without Pulse-Shaping Flux at Sample at 2 MW 9 x 10⁸ n s⁻¹ at 10 m, L/D = 300 Spatial Resolution < 10 um $\Delta\lambda/\lambda = 10\%$ at $\lambda = 2$ Å Wavelength Resolution TOF Mode width Pulse-Shaping 1 x 10⁸ n s⁻¹ at 10 m, L/D = 300 Flux at Sample at 2 MW Spatial Resolution

Spatial Resolution Wavelength Resolution

ODIN Quick Facts

< 10 μm Adjustable <0.5% - 1% (constant for all $~\lambda)$

LoKI

SANS for Soft Matter, Materials and Bio-science

Detector tank installed Shielding walls under installation

SANS = Small Angle Neutron Scattering

- Small diffraction angles from large objects (Bragg law)
- Biological samples, weak scatterers
- Nanomaterials, polymers
- Compounds in solution see how clusters form in the liquid

√eXus	file	disp	layed	in	scipp	
-------	------	------	-------	----	-------	--

LOKI QUICK Facts	
Instrument Class	SANS
Moderator	Cold
Primary Flightpath	23.5 m, $L_1 = 3$, 5, 8 m
Secondary Flightpath	$L_2 = 1.5 m, 3 m, 5-10 m$
Wavelength Range	2–22 Å
Standard Mode (14 Hz)	
Bandwidth	7.5 Å $[L_2 = 10 m]$
	10 Å $[L_2 = 5 m]$
Flux at Sample at 2 MW	4×10^8 n s ⁻¹ cm ⁻² [L ₁ = 3 m]
	$5.6 \times 10^7 \text{ n s}^{-1} \text{ cm}^{-2} [\text{L}_1 = 8 \text{ m}]$
O-Range	0.01-2 Å ⁻¹ [L ₁ = 3 m, L ₂ = 1.5, 5 m]
	0.005–2 Å ⁻¹ [$L_1 = 8$ m, $L_2 = 1.5$, 10 m]
Pulse Skipping Mode (7 Hz)	
Bandwidth	15 Å $[L_2 = 10 m]$
	20 Å $[L_2 = 5 m]$
Flux at Sample at 2 MW	2×10^8 n s ⁻¹ cm ⁻² [L ₁ = 3 m]
•	$2.8 \times 10^7 \text{ n s}^{-1} \text{ cm}^{-2} [L_1 = 8 \text{ m}]$
Q-Range	0.005–2 Å ⁻¹ [L ₁ = 3 m, L ₂ = 1.5, 5 m]
	0.002-2 Å ⁻¹ [L ₁ = 8 m, L ₂ = 1.5, 10 m]

Science and Technology Facilities Council Estia

Focussing Polarised Reflectometer for Tiny Samples

CSPEC

Cold Chopper Spectrometer (not among first 6)

- Collective and quasiparticle excitations in frustrat
 compounds.
- Low lying excitations of quasiparticles in quantun materials.
- Magnon -phonon hybrid excitations in multiferro materials.
- Time dependence of the rotational and translatio diffusive processes in enzyme catalysis.
- Dynamics of hydration processes and the structurelaxation of the glassy water.
- Time dependent phenomena of hydrogen storage in clathrates.
- Proton diffusion in metal organic frameworks.
- Operando studies of proteins such as those involved in photosynthesis.

Spectrometer measures scattered neutrons with energy resolution

- Direct-geometry instrument
- Neutrons monochromatised with choppers
- Energy analysis by TOF
- Dynamic processes, binding energies
- Phonon energies, magnetisation, temperatures
- Basic physics of materials, materials science

160 m
3.5 m
Cold
2-20 Å
1.72 Å
9 10 ⁵ n s ⁻¹ cm ⁻²
(4 x 2 cm ² standard beam)
4 10 ⁶ n s ⁻¹ cm ⁻²
(1 x 1 cm ² focussed beam)
5° – 140° [H] ± 26° [V]
1% - 5% E _i
Foreseen upgrade

BIFROST

Multiplexing Indirect Spectrometer for Extreme Environments

- Low-D magnets
- High-Tc superconductivity
- Functional magnetic materials
- Geoscience
- Parametric studies
- Weak signals & small samples

 Energy analysis by Bragg reflection behind sample

High Flux Mode [2.3–4.0 Å]		
Flux at Sample at 2 MW	$6 \times 10^9 \text{ n s}^{-1} \text{ cm}^{-2}$	
Resolution ($E_f = 5 \text{ meV}, \hbar \omega = 0$)	190 µeV	
Resolution ($E_f = 5 \text{ meV}$, $\hbar \omega = 5 \text{ meV}$)	450 μeV	
High Resolution Mode [2.3-4.0 Å]		
Flux at Sample at 2 MW	$9 \times 10^8 \text{ n s}^{-1} \text{ cm}^{-2}$	
Resolution ($E_f = 5 \text{ meV}, \hbar \omega = 0$)	50 µeV (prismatic)	
Resolution ($E_f = 5 \text{ meV}, \hbar \omega = 5 \text{ meV}$)	50 µeV (prismatic)	

NI

Neutron Macromolecular Crystallograph

- Similar to x-ray crystallography, but visibility of hydrogens
- Single (large) crystals
- Proteins, minerals
- Protonation, invisible with x rays Proton transport across membra

Enzyme mechanisms

Protein-ligand interactions

ИХQ	uick Facts.		
MX	Quick Facts		
nstrument Class		Large-Scale Structures	
Aoderator		Cold	
Primary Flightpath		157 m	
Secondary Flightpath		0.2–1.0 m	
Vavelength Range		1.8–10 Å	
Bandwidth		1.74 Å	
	t Sample at 2 MW	$1 imes 10^9$ n s $^{-1}$ cm $^{-2}$ (1.8–3.5 Å)	
IY	ength Resolution $\Delta\lambda/\lambda$	2%–4% (over wavelength range)	
-	Divergence	Adjustable up to $\pm 0.2^{\circ}$	
	Size	0.2–5 mm	

Håkan Danared

٠

Diffraction Resolved by Energy and Angle Measurements

Instrument hall D01

Instrument hall D03

Instrument halls E01/E02

Fundamental physics at ESS

- NNBAR, neutron–antineutron oscillations (HighNess EU-funded study)
- HIBEAM/ANNI, first stage of NNBAR
- ESSnuSB ESS neutrino Super Beam, neutrino oscillations at 2nd maximum (EU-funded study, completed)
- ESSnuSB+, continuation of ESSnuSB (EU-funded study, in progress)
- Coherent Elastic Neutrino–Nucleus Scattering CEvNS

The End