Theoretical background

A crash course on Galactic dynamics + Hands-on tutorial on Galpy orbit modeling

> Gustavo Medina Toledo University of Toronto

Bibliography

- Jo Bovy's Online graduate textbook (2023): Dynamics and astrophysics of galaxies
- Binney & Merrifield (1998): "Galactic Astronomy"
- Binney & Tremaine (2008): "Galactic Dynamics"
- Eugene Vasiliev's Modern Galactic dynamics in the era of plentiful data (2020) workshop

NGC 7773 (Credit: HST)

NGC 5679 & Arp 274 (Credit: HST)

M100 (Credit: HST)

Outline

Theoretical background

- Gravity and potentials
- Lagrangian and Hamiltonian formalisms
- Conserved quantities (e.g., energy, ang momentum)
- Orbits in spherical and disk potentials

Observational background

- The Milky Way
- Surveys
- Streams
- The accretion history of the Milky Way
- The effects of satellite accretion

Galpy tutorial

- The basics: installation and getting to know the package
- Generating orbits
- The effect of the Large Magellanic Cloud
- Comparing and modifying potentials

Outline

Theoretical background

- Gravity and potentials
- Lagrangian and Hamiltonian formalisms
- Conserved quantities (e.g., energy, ang momentum)
- Orbits in spherical and disk potentials

Observational background

- The Milky Way
- Surveys
- Streams
- The accretion history of the Milky Way
- The effects of satellite accretion

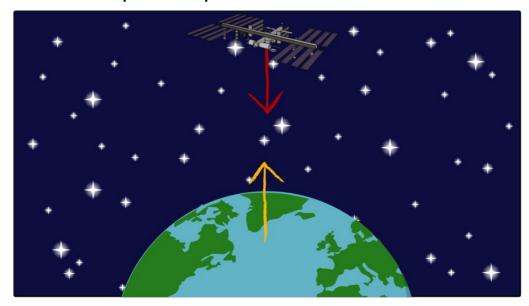
Galpy tutorial

- The basics: installation and getting to know the package
- Generating orbits
- The effect of the Large Magellanic Cloud
- Comparing and modifying potentials

Matter and the gravitational field

Masses under the influence of gravity (long range force)

$$\Phi(\vec{x}) = \sum_{i=0}^{N} \frac{-GM_i}{|\vec{x} - \vec{x}_i|} \qquad \vec{F}(\vec{x}) = -m\nabla\Phi(\vec{x})$$



Credit: Storyboard.com

Matter and the gravitational field

Masses under the influence of gravity (long range force)

$$\Phi(\vec{x}) = \sum_{i=0}^{N} \frac{-GM_i}{|\vec{x} - \vec{x}_i|} \qquad \nabla^2 \Phi(\vec{x}) = 4\pi G \rho \qquad \vec{F}(r) = -\frac{GMm}{r^2} r$$

$$\vec{F}(\vec{x}) = -m \nabla \Phi(\vec{x})$$

In galactic dynamics:

- relativity is neglected;
- cosmological expansion is neglected;
- potential is negative and tends to zero at infinity.

individual point masses. Therefore:

$$\vec{F}(\vec{x}) = \sum_{i=0}^{N} \frac{-GM_{i}m}{|\vec{x} - \vec{x}_{i}|^{3}} (\vec{x} - \vec{x}_{i})$$

Matter and the gravitational field

The mass of galaxies as a sum of discrete constituents:

- Stars,
- Dark matter particles,
- ISM

M101 (Credit: ESA & NASA)

Their distribution is rather uniform

Mass density can be approximated as a smooth function (\rightarrow the potential and the force are also smooth)

NGC 660 (Credit: Gemini Obs. & AURA)

Circular velocity

 For a circular orbit, the centripetal acceleration is balanced by the gravitational field

Circular velocity at radius r

$$a_r = -\frac{v^2}{r} = -\frac{GM(\langle r)\rangle}{r^2}$$

$$v_c^2 = \frac{GM(\langle r)\rangle}{r}$$

Connection to rotation curves and dark matter:
Flat rotation curve → vc constant with r implies linear relation between mass and r

For reference, for the Sun $R_0 \approx 8 \, kpc$, $v_c \approx 220 \, km \, s^{-1}$

$$M(<8 kpc) \approx 9 \times 10^{10} M_0$$

Dynamical time (or crossing time)

Time required to cross a dynamical system

$$t_{dyn} = \frac{2\pi r}{v_c} = \sqrt{\frac{3\pi}{G < \rho}}$$

Depends on the average density!

- short dynamical timescales in the Galactic center and long in the halo
- For the sun, t_{dvn} ~ 225 Myr (and is close to 1 Gyr at 50 kpc)

Since the age of the Universe is ~13 Gyr, and galaxies are ~10 Gyr old, they are dynamically young!

Examples of potentials

Point mass

$$\Phi(r) = -\frac{GM}{r}$$

$$v_c(r) = \sqrt{\frac{GM}{r}}$$

$$t_{dyn}(r) = \frac{2\pi r}{v_c}$$

Homogeneous sphere (radius R)

$$\Phi(r) = \begin{cases} \frac{2\pi G \rho_0}{3} (r^2 - 3R^2), & (r < R) \\ \frac{4\pi G \rho_0 R^3}{3r}, & (r \ge R) \end{cases}$$

$$v_c(r) = \sqrt{\frac{4\pi G\rho_0}{3}}r \qquad t_{dyn} = \sqrt{\frac{3\pi}{G\rho_0}}$$

e.g., Solar system (Keplerian orbits), supermassive black holes

 t_{dyn} valid for circular and radial orbits (harmonic oscillator)

Examples of potentials

Plummer sphere

(Plummer 1911)

$$\Phi(r) = -\frac{GM}{\sqrt{r^2 + b^2}}$$

b: Plummer scale length

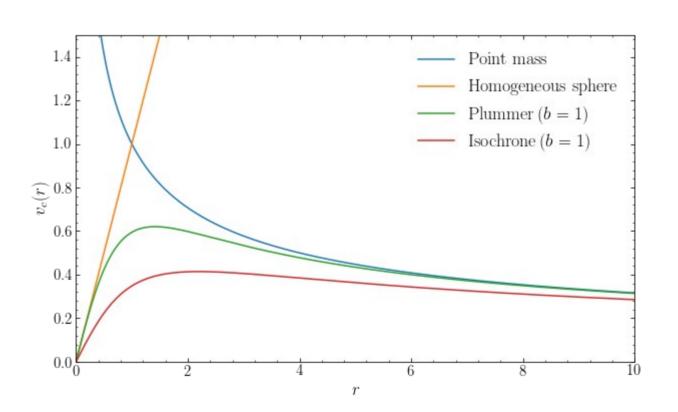
Isochrone potential (Heron 1959)

$$\Phi(r) = -\frac{GM}{b + \sqrt{r^2 + b^2}}$$

$$v_c(r) = \sqrt{\frac{GM r^2}{(b+a)^2 a}} \qquad a = \sqrt{r^2 + b^2}$$

e.g., dark matter halos, small dwarf galaxies, originally used for globular clusters too

Examples of potentials



Important power-law potentials

$$\rho(r) = \frac{\rho_0 a^{\alpha}}{r^{\alpha} (1 + r/a)^{\beta - \alpha}} \qquad \rho(r) = \begin{cases} \rho_0 (\frac{a}{r})^{\alpha}, & r \ll a, \\ \rho_0 (\frac{a}{r})^{\beta}, & r \gg a. \end{cases}$$

del Navarro-Frenk-White (NFW) model (Navarro et al. 1997)

(Hemquist 1990)
$$\alpha = 1 \quad \beta = 4$$

$$\Phi(r) = -\frac{4\pi G \rho_0 a^2}{\sqrt{2(1+r/a)}} = -\frac{GM}{r+a}$$

$$\alpha = 1 \quad \beta = 3$$

$$\Phi(r) = -4\pi G \rho_0 a^3 \ln(1+r/a)/r$$

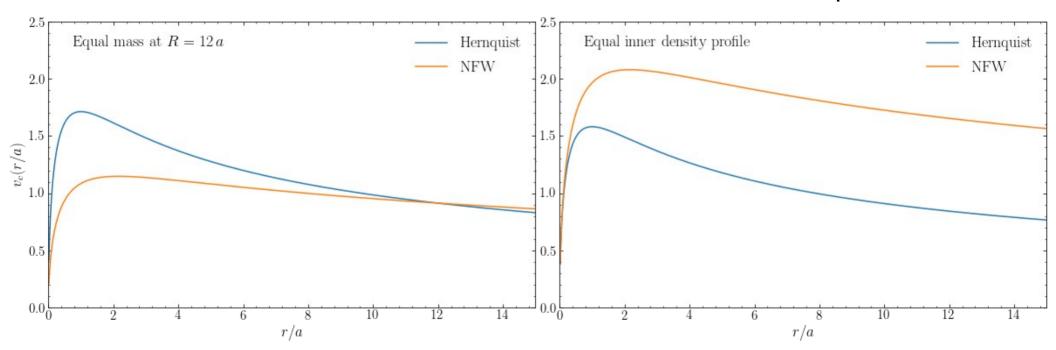
$$\sqrt{2(1+r/a)}$$
 $r+a$ e.g., dark matter halos, elliptical galaxies, galactic bulges

ptical e.g., dark matter halos in cosmological simulations

Important power-law potentials

Same enclosed mass at r = 12 a

Normalized so that both have the same inner profile



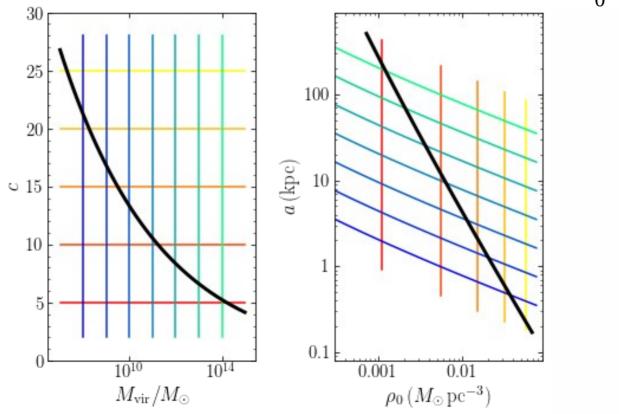
Parametrization of NFW potentials

- Virial mass and concentration parameter
- Virial radius: radius within which the mean density is a factor Δ_{ν} times the Universe's critical density
- Typically, $\Delta_v = 200 \longrightarrow r_{200}$, m_{200}

$$\rho(r) = \frac{\Delta_{\nu} \rho_{crit}}{3} \frac{c^3}{f(c)} \qquad f(c) = \ln(1+c) - \frac{c}{1+c} \qquad c = \frac{r_{vir}}{a}$$

Concentration-mass relation

$$\log_{10} c = 0.905 - 0.101 \log_{10} \left(\frac{M_{vir}}{10^{12} h^{-1} M_0} \right)$$



Notions of Classical Mechanics

- Classical mechanics: motions of bodies under the influence of "classical" forces (gravity, electromagnetic)
- The basic concepts are contained in Newton's laws of motion

$$\vec{p} = m \vec{v}$$
 $\vec{F} = \dot{\vec{p}}$

 A very important quantity in the study of Galactic orbits is the angular momentum

$$\vec{L} = \vec{x} \times \vec{p}$$
 $\dot{\vec{L}} = x \times \vec{F}$ Torque

If the torque (or one of its components) is zero, the angular momentum (or one of its components) is conserved

Notions of Classical Mechanics

Work and energy

$$W_{ij} = \int_{x_i}^{x_j} \vec{F} \cdot d\vec{x} = T_j - T_i$$

If the force is independent of time, the force is conservative

Kinetic energy

$$T = \frac{m|v|^2}{2}$$

Potential energy (of a body in a gravitational field)

$$V = m\Phi$$

Total energy

$$E = T + V$$

Energy and escape velocity

- The energy E is conserved when the force is conservative (independent of time)
- Escape velocity: minumum velocity necessary to "escape" the gravitational field, from a given position to infinity

$$v_{esc} = \sqrt{2(\Phi_{inf} - \Phi(x))} \qquad v_{esc}(r = 8kpc) = \sqrt{2(\frac{GM(r < 8kpc)}{8kpc})}$$

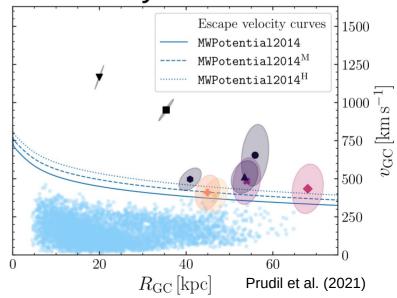
Under the correct assumptions, this equation provides strong constraints on the mass of the Milky Way!

Energy and escape velocity

- The energy E is conserved when the force is conservative (independent of time)
- Escape velocity: minumum velocity necessary to "escape" the gravitational field, from a given position to infinity

$$v_{esc}(r=8\,kpc) = \sqrt{2\left(\frac{GM\left(r<8\,kpc\right)}{8\,kpc}\right)}$$

Under the correct assumptions, this equation provides strong constraints on the mass of the Milky Way!



Lagrangian formalism

- Newtonian approach is familiar and intuitive, but more powerful frameworks exist
- Hamilton's principle: The motion of a system from t1 to t2 is such that the action integral has an extremal value

Action integral t_2

$$S = \int_{t_1}^{t_2} L(\vec{x}, \dot{\vec{x}}, t) dt = \int_{t_1}^{t_2} T - V dt$$

Lagrange equations

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}$$

Lagrangian formalism

- If a generalized coordinate qj does not appear in L, the associated momentum component is conserved
- In a well-chosen coordinate frame, L can reveal a system's conserved quantities

Generalized momentum

$$p_{j} = \frac{\partial L}{\partial \dot{q}_{j}} \qquad \dot{p}_{j} = \frac{\partial L}{\partial q_{j}}$$

Lagrange equations

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\partial L}{\partial q}$$

Hamiltonian formalism

• Hamiltonian:

$$H(\vec{q},\vec{p},t) = \dot{\vec{q}}\vec{p} - L(\vec{q},\dot{\vec{q}},t)$$

 Hamilton equations treat the coordinates q and the momentum p on the same footing

$$\dot{\vec{q}} = \frac{\partial H}{\partial \vec{p}} \qquad \dot{\vec{p}} = -\frac{\partial H}{\partial \vec{q}} \qquad \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}$$

Instead of a set of second-order differential equations for q, we now have a twice as large set of first-order differential equations for q and p!

Hamiltonian formalism

• Hamiltonian: $H(\vec{q}, \vec{p}, t) = \dot{\vec{q}} \vec{p} - L(\vec{q}, \dot{\vec{q}}, t)$

 $q \rightarrow$ configuration space $(q, p) \rightarrow$ phase space

If the potential does not depend on the velocities,

$$H = E = T + V$$

Hamiltonian formalism

Canonical transformations and generating function

$$\dot{\vec{q}} \, \vec{p} - H = \dot{\vec{q}} \, ' \, \vec{p} \, ' - K + \frac{dF}{dt}$$

If generating function S(q, p', t) such that Hamiltonian
 K = 0

$$H(\vec{q}, \frac{\partial S}{\partial \vec{q}}, t) + \frac{\partial S}{\partial t} = 0 \qquad \text{If} \quad \frac{\partial H}{\partial t} = 0 \quad \text{and} \quad S(\vec{q}, \vec{p}', t) = W(\vec{q}, \vec{p}') - Et$$

$$\text{In military, leads in equation} \quad \text{If} \quad \frac{\partial W}{\partial t} = 0 \quad \text{If} \quad \frac{\partial W}{\partial t} = 0$$

Hamilton-Jacobi equation

$$H(\vec{q}, \frac{\partial W}{\partial \vec{q}}) = E$$

Action-angle variables

If S(q) along a dynamical trajectory can be written as a sum over functions of a single component, the solution of the Hamilton-Jacobi equation can be defined based on N quantities

$$J_{i} = \frac{1}{2\pi} \oint dq_{i} \frac{\partial W_{q_{i}}(q_{i}, C)}{\partial q_{i}}$$

The transformed configuration coordinates are now

$$\vec{\theta} = \sum_{i} \frac{\partial W_{i}(q_{i}, J)}{\partial J_{i}}$$

And the time evolution of the system is given by

$$\dot{\vec{\theta}} = \frac{\partial H(\vec{J})}{\partial \vec{J}} = constant \qquad \dot{\vec{J}} = -\frac{\partial H(\vec{J})}{\partial \vec{\theta}} = 0$$

Action-angle variables

If S(q) along a dynamical trajectory can be written as a sum over functions of a single component, the solution of the Hamilton-Jacobi equation can be defined based on N quantities

$$J_{i} = \frac{1}{2\pi} \oint dq_{i} \frac{\partial W_{q_{i}}(q_{i}, C)}{\partial q_{i}}$$

The transformed configuration coordinates are now

$$\vec{\theta} = \sum_{i} \frac{\partial W_{i}(q_{i}, J)}{\partial J_{i}}$$

And the time evolution of the system is given by

$$\dot{\vec{\theta}} = \frac{\partial H(\vec{J})}{\partial \vec{J}} = constant \qquad \dot{\vec{J}} = -\frac{\partial H(\vec{J})}{\partial \vec{\theta}} = 0$$

"Angle" variables: θ_i "Action" variables: J_i

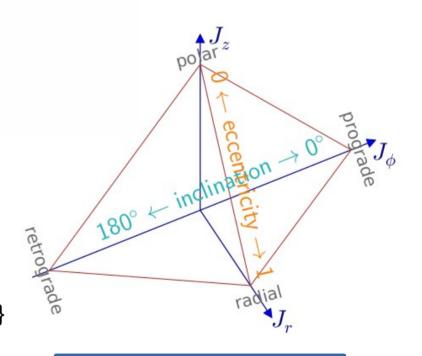
Action-angle variables

- Describe the extent of oscillations in each dimension
- Natural description of motion (angles change linearly with time)
- Canonical coordinates → the 6D phase-space volume element is

$$d^3x d^3v = d^3J d^3\theta$$

- Actions are adiabatic invariants (conserved under slow variation of potential)
- Efficient methods for conversion between $\{x,v\}$ and $\{J,\theta\}$ exist

$$\dot{\vec{\theta}} = \frac{\partial H(\vec{J})}{\partial \vec{J}} = constant \qquad \dot{\vec{J}} = -\frac{\partial H(\vec{J})}{\partial \vec{\theta}} = 0$$

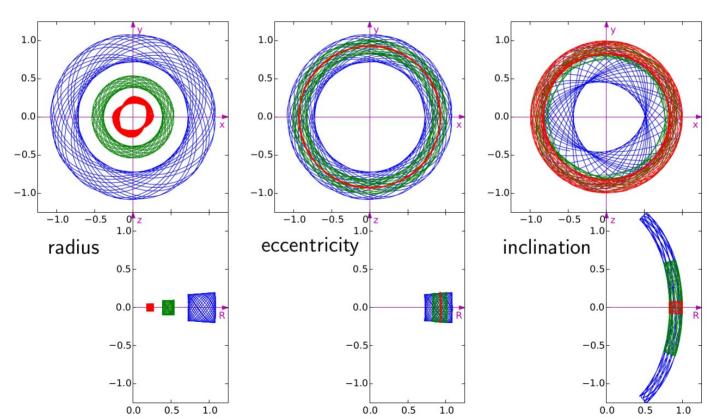


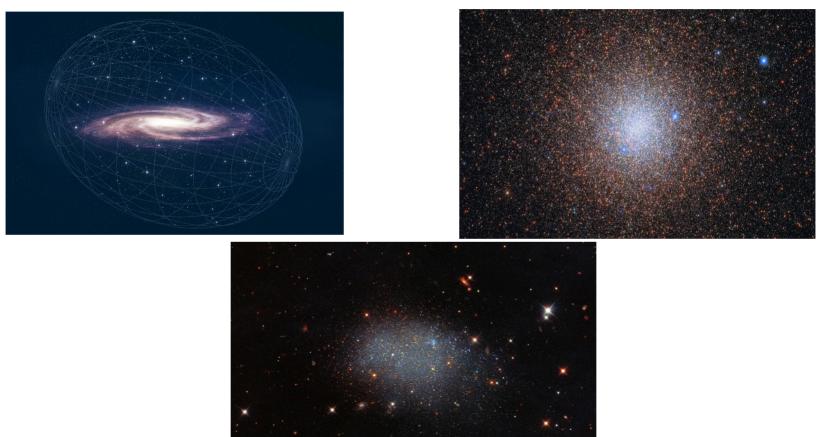
"Angle" variables: $\; heta_i$

"Action" variables: J

Study of orbits and integrals of motion

How large is the variety of orbits?





Credit: Sci.news (left), ESO 461-036 NASA/ESA/Hubble (center), NGC 6441 Hubble/ESA and NASA (right)

- "Orbit": The trajectories that bodies travel on under the influence of gravity
- The acceleration in a gravitational field is independent of the mass of the body

$$m\ddot{\vec{x}} = m\vec{g}(\vec{x})$$

 If the mass of the body does not affect the gravitational field, the entire orbit is independent of mass ("test particles")

- Because the orbital trajectory is determined by a secondorder differential equation, an orbit is fully determined by its initial phase-space coordinate (for test particles only)
- For spherically symmetric potentials, the (specific) angular momentum vector is conserved

$$\vec{L} = \vec{r} \times \dot{\vec{r}}$$

 \rightarrow the orbit is constrained to a plane, which can be described in polar coordinates r, ψ

- Because the orbital trajectory is determined by a secondorder differential equation, an orbit is fully determined by its initial phase-space coordinate (for test particles only)
- For spherically symmetric potentials, the (specific) angular momentum vector is conserved

$$\vec{L} = \vec{r} \times \dot{\vec{r}}$$

 \rightarrow the orbit is constrained to a plane, which can be described in polar coordinates r, ψ \rightarrow $\dot{\psi} = \frac{L}{r^2}$ Kepler's second law

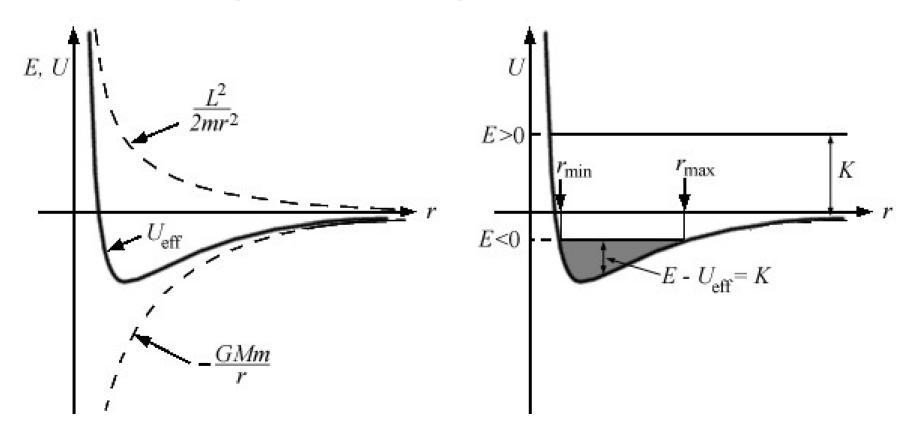
General properties of orbits in spherical potentials

The specific energy of an orbital in a spherical potential is

$$E = \frac{\dot{r}^2}{2} + \frac{L^2}{2r^2} + \phi(r)$$

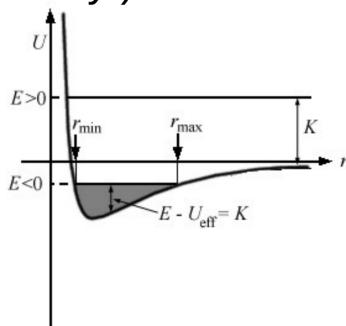
where $\phi_{eff}(r) = \frac{L^2}{2r^2} + \phi(r)$ is the effective potential

General properties of orbits in spherical potentials



General properties of orbits in spherical potentials

- Hyperbolic orbit: E>0
- Parabolic orbit (\rightarrow escape velocity!): E=0
- Elliptical orbit: E < 0
- Circular orbit: $E = \phi_{eff,min}(r)$



General properties of orbits in spherical potentials

Pericenter and apocenter

$$\dot{r}^2 = 2|E - \phi(r)| - \frac{L^2}{r^2} = 0$$

Orbital eccentricity

$$e = \frac{r_a - r_p}{r_a + r_p}$$

e = 0 implies circular orbit

e → 1 implies unbount orbit

General properties of orbits in spherical potentials

• Radial period: $T_r = 2 \int_r^a dt$

• Rotational (azimuthal) period: $T_{\psi} = \frac{2 \pi}{|\Delta \psi|} T_r$

Orbits in homogeneous sphere

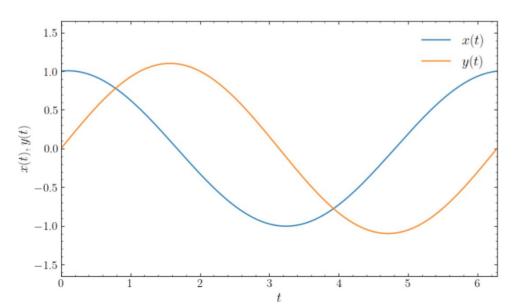
Orbits at r < R

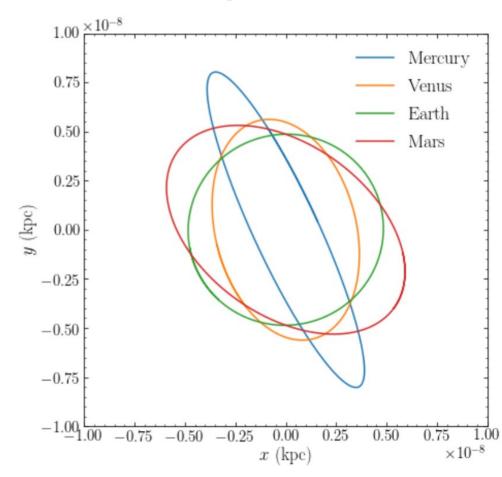
$$\Phi(r) = \frac{1}{2}\omega^{2}r^{2}$$

$$\omega^{2} = 4\pi G \rho_{0}/3$$

$$x(t) = a\cos(\omega t + \psi_{x})$$

$$y(t) = b\cos(\omega t + \psi_{y})$$





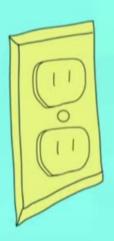
Orbits in homogeneous sphere

• Orbits at r < R

$$\Phi(r) = \frac{1}{2} \omega^2 r^2 \qquad \omega^2 = 4 \pi G \rho_0 / 3 \qquad \qquad \frac{x(t) = a \cos(\omega t + \psi_x)}{y(t) = b \cos(\omega t + \psi_y)}$$

- Ellipses with the origin at r=0
- Four constants: a, b, orientation i, and initial position Also: $T_w = 2T_r = \frac{2\pi}{\omega}$ — the period of every orbit is the same

TECHNICAL DIFFICULTIES



PLEASE STAND BY

Orbits in Kepler potential

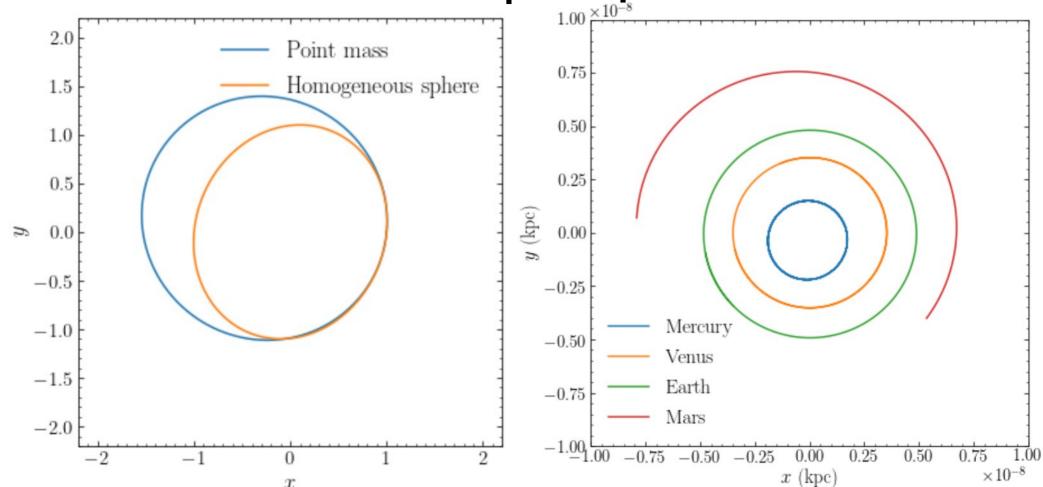
• Slightly more complicated than the homogeneous sphere

$$r(\psi) = \frac{1}{C\cos(\psi - \psi_0) + GM/L^2}$$

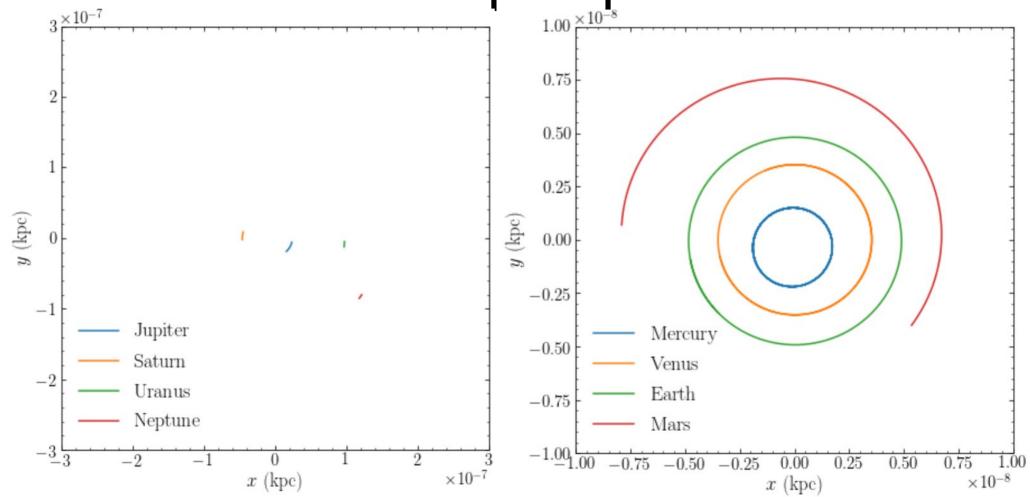
- The orbit only depends on a cosine
- This solution represents an ellipse with the origin at one focus, with:

$$a = \frac{L^2}{GM(1 - e^2)} \qquad e = \frac{CL^2}{GM} \qquad \begin{array}{c} r_p = a(1 - e) \\ r_a = a(1 + e) \end{array} \qquad T_r = T_{\psi} = \frac{2\pi a^{3/2}}{\sqrt{GM}}$$

Orbits in Kepler potential



Orbits in Kepler potential



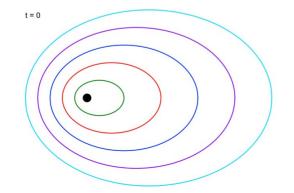
TECHNICAL

Orbits in other spherical potentials

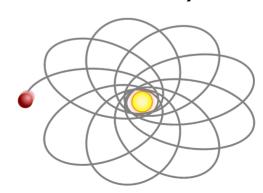
Isochrone potential: same orbital period as for Kepler's potential

$$T_r = \frac{\pi}{\sqrt{2}} \frac{GM}{\sqrt{-E^3}}$$
 and $\frac{1}{2} \leqslant \frac{T_r}{T_\psi} \leqslant 1$

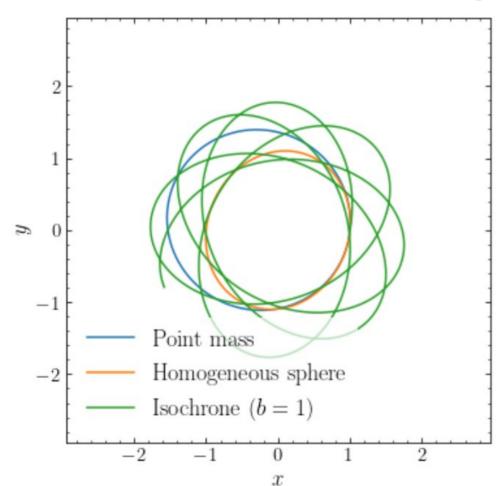
 Orbits in galactic potentials are typically not closed (only in homogeneous sphere or Kepler do orbits close!)



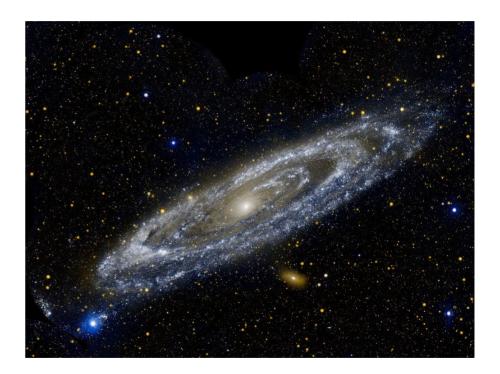
VS



Orbits in other spherical potentials



Orbits instead form
rosettes and eventually fill
the entire space between
the peri/apo center (as
allowed by E and L)



 Axisymmetric systems: symmetric w.r.t. rotations around the axis perpendicular to the disk → cylindrical coordinates!

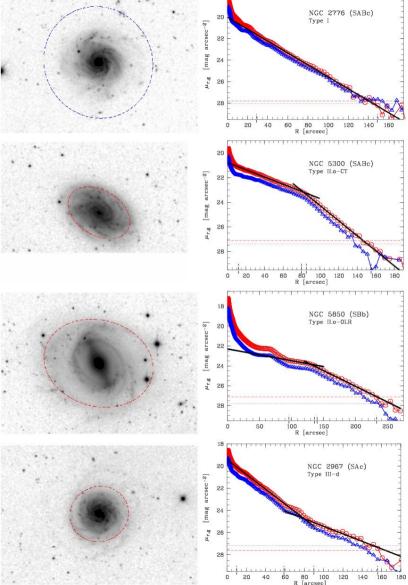
$$\rho(R,\phi,z)=\rho(R,z)$$

$$\Phi(R,\phi,z)=\Phi(R,z)$$



The radial surface-brightness of galactic disks decays exponentially

$$I(R) = I_0 \exp(-R/h_R)$$

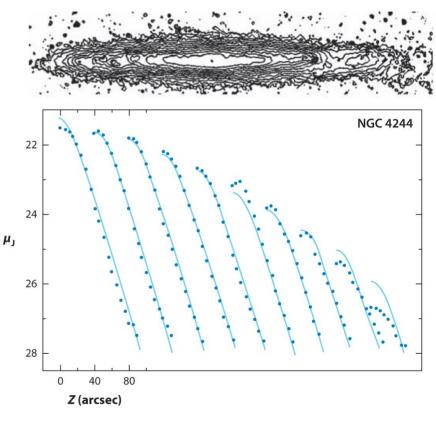


Vertical profile

$$sech^{2}(\frac{z}{2h_{z}}) = 4\left[\exp(\frac{z}{2h_{z}}) - \exp(-\frac{z}{2h_{z}})\right]^{-2}$$

Double exponential disk

$$n(R,z) \propto \exp\left(-\frac{R}{h_r} - \frac{|z|}{h_z}\right)$$

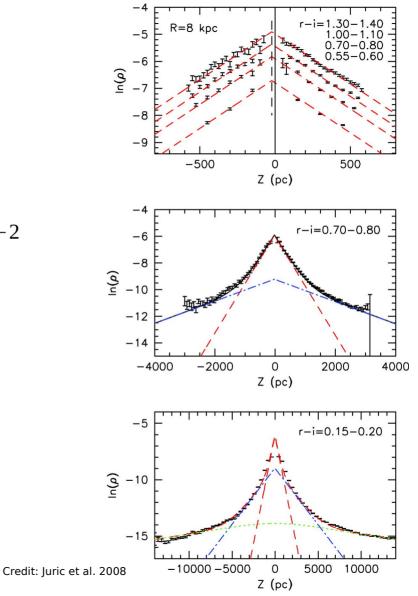


Vertical profile

$$sech^{2}(\frac{z}{2h_{z}}) = 4\left[\exp(\frac{z}{2h_{z}}) - \exp(-\frac{z}{2h_{z}})\right]^{-2}$$

Double exponential disk

$$n(R,z) \propto \exp\left(-\frac{R}{h_r} - \frac{|z|}{h_z}\right)$$



The Kuzmin model

A simple flattened axisymmetric potential

$$\Phi(R,z) = -\frac{GM}{\sqrt{R^2 + (|z| + a)^2}}$$

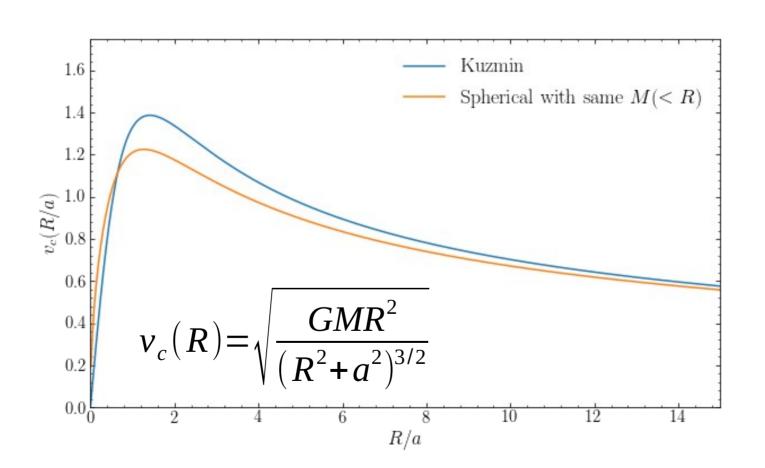
Surface density

$$\Sigma(R) = \frac{Ma}{2\pi} \frac{1}{(R^2 + a^2)^{3/2}}$$

Rotation curve

$$v_c(R) = \sqrt{\frac{GMR^2}{(R^2 + a^2)^{3/2}}}$$

The Kuzmin model



- Thickened disk
- Akin to isochrone (spherical) potential

$$\Phi(R,z) = -\frac{GM}{\sqrt{R^2 + (\sqrt{z^2 + b^2} + a)^2}}$$

Mass density

- Thickened disk
- Akin to isochrone (spherical) potential

$$\Phi(R,z) = -\frac{GM}{\sqrt{R^2 + (\sqrt{z^2 + b^2} + a)^2}}$$

Mass density

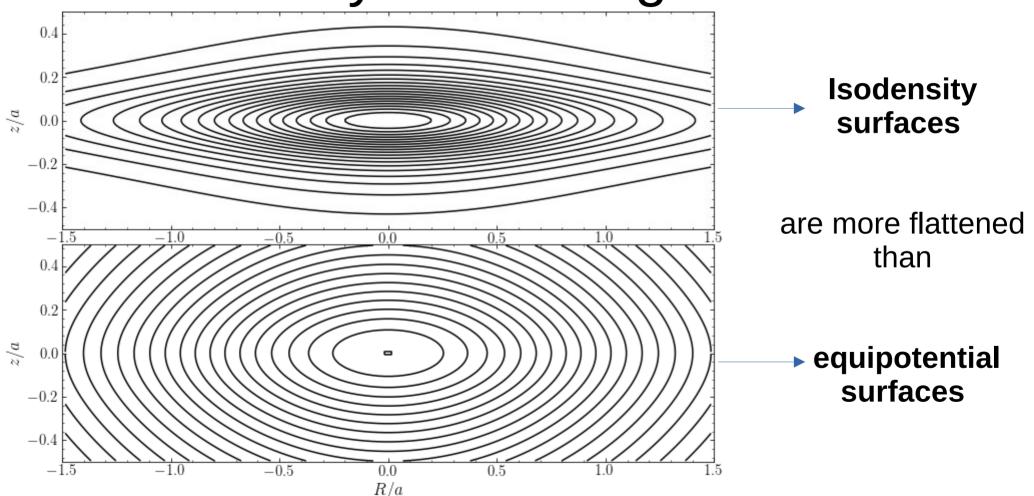
$$\rho(R,z) = \frac{b^2 M}{4\pi} \frac{aR^2 + (3\sqrt{z^2 + b^2} + a)(\sqrt{z^2 + b^2} + a)^2}{(R^2 + (\sqrt{z^2 + b^2} + a)^2)^{5/2}(z^2 + b^2)^{3/2}}$$

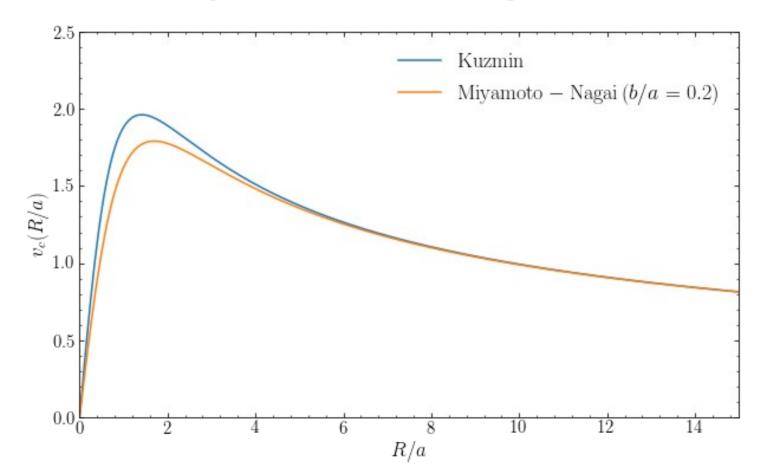
- Thickened disk
- Akin to isochrone (spherical) potential

$$\Phi(R,z) = -\frac{GM}{\sqrt{R^2 + (\sqrt{z^2 + b^2} + a)^2}}$$

Mass density

I told you





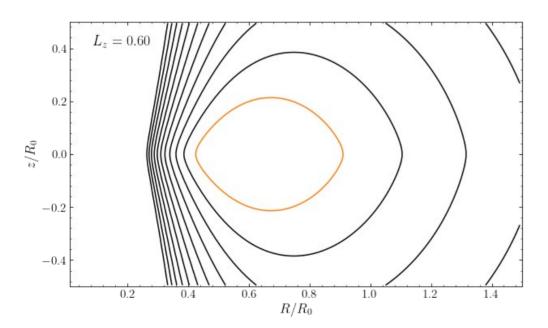
Lagrangian in cylindrical coordinates

$$\mathscr{L}(R,\phi,z,\dot{R},\dot{\phi},\dot{z}) = \frac{m}{2}(\dot{R}^2 + [R\dot{\phi}]^2 + \dot{z}^2) - m\Phi(R,z)$$

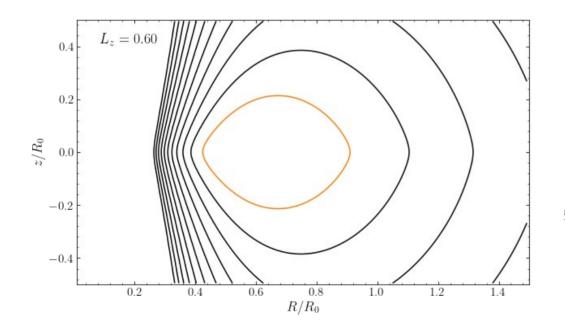
• $p_{\phi} = \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = mR^2 \dot{\phi} = mL_z \rightarrow \text{constant! (is conserved)}$

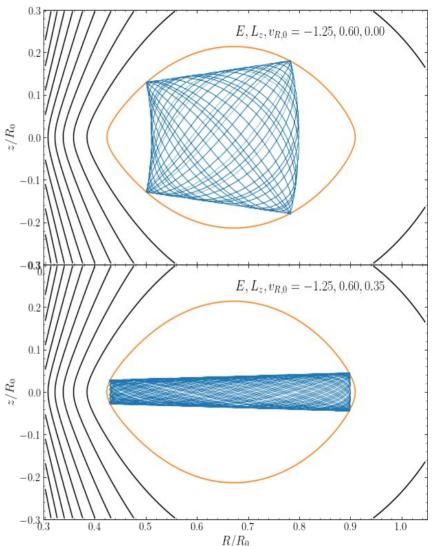
• Both E and L_z are integrals of motion

$$H_{eff}(R, z, p_R, p_z; L_z) = \frac{1}{2m} (p_R^2 + p_z^2) + m \Phi_{eff}(R, z; L_z)$$



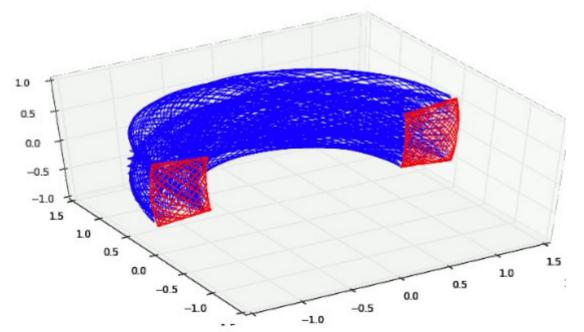
$$H_{eff}(R, z, p_R, p_z; L_z) = \frac{1}{2m} (p_R^2 + p_z^2) + m \Phi_{eff}(R, z; L_z)$$

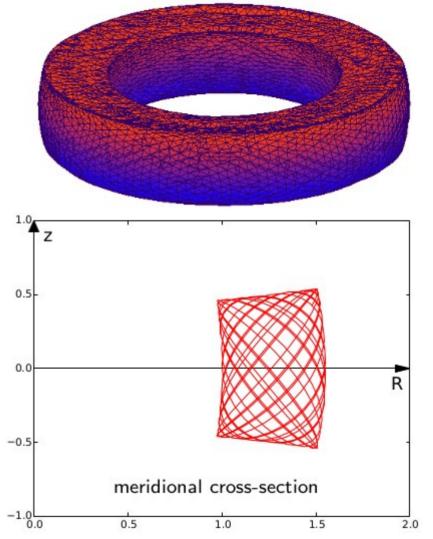


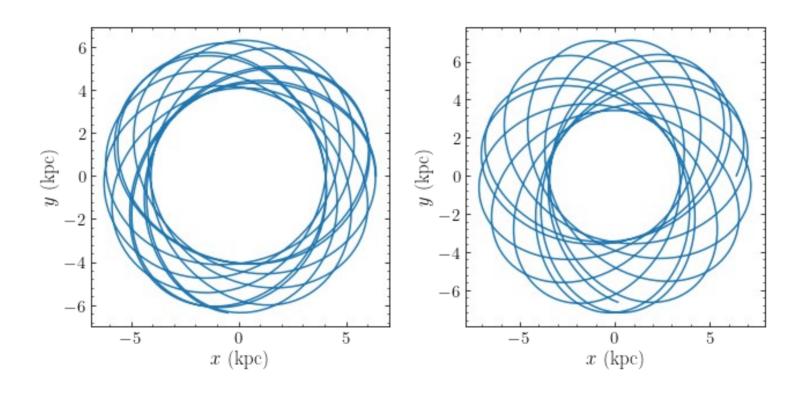


$$H_{eff}(R,z,p_R,p_z;L_z) = \frac{1}{2m}(p_R^2 + p_z^2) + m\Phi_{eff}(R,z;L_z)$$

"Tube" orbits







Equilibria of collisionless systems

- One of the most useful assumptions of galactic dynamics (→ inference of mass and orbital distributions)
- Non-collisional effects are required to drive stellar systems to an equilibrium state (e.g., violent relaxation and phase-mixing)

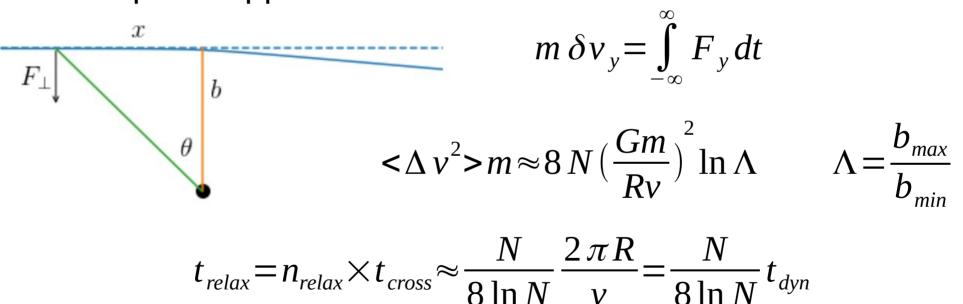
PLEASE STAND BY

Collisionless vs collisional dynamics

- Are the strong gravitational interactions between stars important drivers of the evolution of galaxies?
- Relaxation time: time over which the combined effect of many close encounters has changed a star's velocity by 100%

Two-body relaxation

The impulse approximation



Two-body relaxation

The impulse approximation

$$m \, \delta v_{y} = \int_{-\infty}^{\infty} F_{y} \, dt$$

$$<\Delta v^{2} > m \approx 8 \, N \left(\frac{Gm}{Rv}\right)^{2} \ln \Lambda \qquad \Lambda = \frac{b_{max}}{b_{min}}$$

$$t_{relax} = n_{relax} \times t_{cross} \approx \frac{N}{8 \ln N} \frac{2 \, \pi R}{v} = \frac{N}{8 \ln N} t_{dyn}$$

For galaxies, $t_{relax} \approx 10^{10} Myr$!!! In globular clusters, $t_{relax} \approx 1 Gyr$

The virial theorem

Scalar virial theorem for self gravitating systems

$$\sum_{i=1}^{N} m_{i} \vec{v}_{i} \cdot \vec{v}_{i} = \sum_{i=1}^{N} \sum_{j < i} \frac{G m_{i} m_{j}}{|\vec{x}_{i} - \vec{x}_{j}|}$$

When generalized:

$$2K+W=0$$

$$2E - W = 0$$

- It is fundamental to describe collisionless systems
- A distribution function f is used to represent the number of bodies in a small phase-space volume (at a given time), under the influence of gravity
- N-body distribution function:

$$f^{(N)}(\vec{w}_1, \vec{w}_2, \dots, \vec{w}_N, t) = \prod_{i=1}^{N} f(\vec{w}_i, t)$$
$$\vec{w}_i \equiv (\vec{x}_i, \vec{v}_i)$$

$$\frac{\partial f(\vec{q}, \vec{p}, t)}{\partial t} + \dot{\vec{q}} \frac{\partial f(\vec{q}, \vec{p}, t)}{\partial q} + \dot{\vec{p}} \frac{\partial f(\vec{q}, \vec{p}, t)}{\partial p} = 0$$

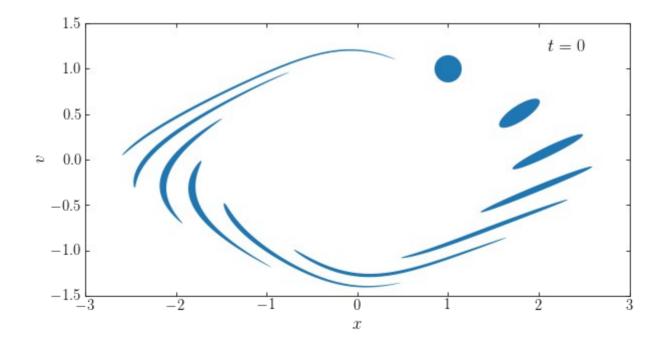
- It describes the evolution of any collisionless system (not only those in equilibrium)
- It is used to describe the evolution of a subset of bodies orbiting in a general smooth mass distribution that they do not contribute much mass to
- It is the equation solved by N-body simulations
- For equilibrium collisionless systems $f(\vec{q}, \vec{p}, t) = f(\vec{q}, \vec{p})$

 How does the phase-space density f evolve along the orbit of a body? Liouville's theorem

$$\frac{df(\vec{x}, \vec{v})}{dt} = \frac{\partial f(\vec{x}, \vec{v})}{\partial t} + \dot{\vec{x}} \frac{\partial f(\vec{x}, \vec{v})}{\partial x} + \dot{\vec{v}} \frac{\partial f(\vec{x}, \vec{v})}{\partial v} = 0$$

→ the phase-space density is conserved along orbital trajectories (key property of Hamiltonian systems!)

 How does the phase-space density f evolve along the orbit of a body? Liouville's theorem



Jeans equations

The Jeans equations involve moments of the distribution function

$$\int d\vec{v} \frac{\partial f(\vec{x}, \vec{v}, t)}{\partial t} + \int d\vec{v} \dot{\vec{x}} \frac{\partial f(\vec{x}, \vec{v}, t)}{\partial x} - \frac{\partial \Phi}{\partial x} \int d\vec{v} \frac{\partial f(\vec{x}, \vec{v}, t)}{\partial v} = 0$$

- Spatial number density $v(\vec{x}) = \int d\vec{v} f(\vec{x}, \vec{v})$
- Velocity dispersion tensor

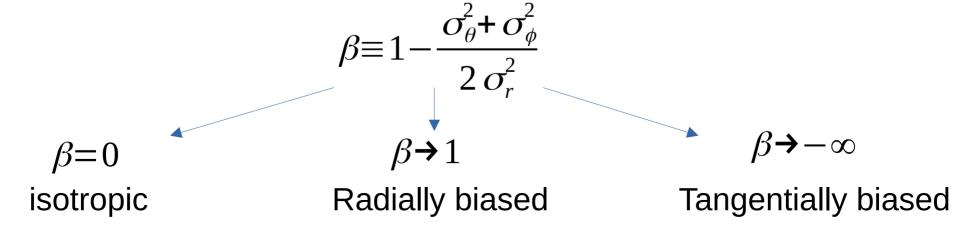
$$\sigma_{i,j}(\vec{x}) = \frac{1}{v(\vec{x})} \int d\vec{v} (v_i - \langle v_i \rangle) (v_j - \langle v_j \rangle) f(\vec{x}, \vec{v})$$

Jeans equations

Velocity dispersion tensor

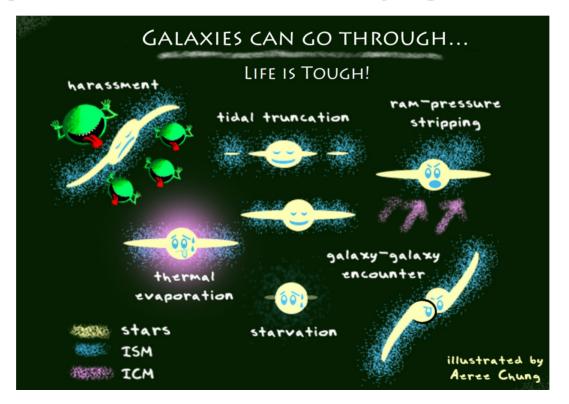
$$\sigma_{i,j}(\vec{x}) = \frac{1}{v(\vec{x})} \int d\vec{v} (v_i - \langle v_i \rangle) (v_j - \langle v_j \rangle) f(\vec{x}, \vec{v})$$

Velocity anisotropy parameter (for spherical systems)



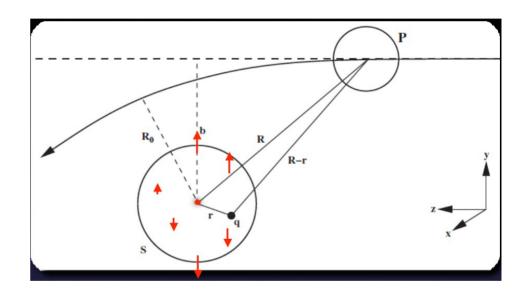
Environmental galaxy evolution

For galaxies in clusters (high density)



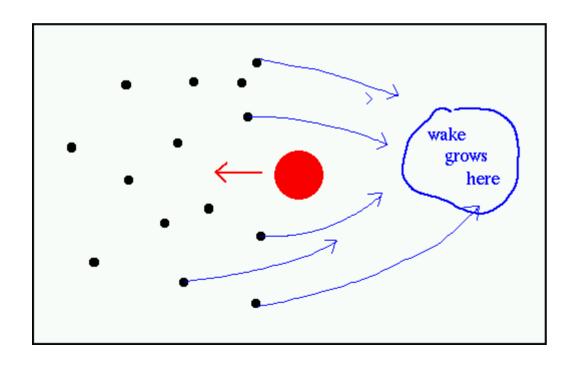
Galaxy interactions

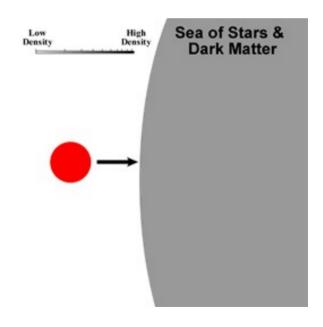
- Galaxy harassment
- Tidal stripping
- Dynamical friction



Dynamical friction

Orbital energy of satellite galaxy (and dark matter subhaloes) transferred to the dark matter particles that make up the host halo





Dynamical friction

- Dynamical friction: Consider the case of a satellite galaxy or a globular cluster with mass m moving on a circular orbit with radius R and velocity Vc around a massive galaxy, i.e., through a background of bodies with mass M
- Assumption: velocity dispersion is constant and isotropic
- Dynamical friction timescale (associated with the loss of angular momentum):

$$t_{df} \sim \frac{R_c^2 V_c}{Gm \ln \Lambda} \qquad \Lambda = -\frac{1}{G}$$

$$\Lambda = \frac{R_c V_c^2}{G(m+M)}$$