

Requirements for the PANDA Tracking system

- Tasks and constraints;
- Figures of merit;
- Benchmark channels.

Requirements for the PANDA tracking

- High precision charged particles track measurement.
- High precision momentum measurement from 100 MeV up to 15 GeV.
- Secondary vertex capabilities for hadrons with c- and squark content.
- Help in identifying particle species.

Constraints for the PANDA tracking

- High rate capability: interaction rate up to 2 ·10⁷ annih/s
- Contain the material budget in order to minimize multiple Coulomb scattering and secondary emission;
- Due to the presence of the target-beam cross-pipe the volume is divided in 2 halves.
- Very tight space for services due to high density of detectors

PANDA Tracking system

4

The tracking of charge particles will be done with a set of different detectors located in the Target and Forward Spectrometers. Combining the information of different detectors we will fulfill all the requirements.

Target-bean cross-pipe

Straw Tube Tracker

Detector's parameters definition

Design choices were driven by the physics performance of the detector options resulting by simulation and prototype performance results.

STT+MVD event display

A set of figures of merit have been defined for each subsystem which allows to characterize the performance issues of the detector options.

15/11/12

5

Specific requirements for the CT

Acceptance Almost 4π

 Minimal Material budget X/X₀ ~ 1.5%

- Resolving complex events High rate capability Multiple tracks, secondary vert. 1 · 10⁴ ev cm⁻² s⁻¹
- Spatial resolution $\sigma_{r\phi} \sim 150 \mu m$ $\sigma_z \sim few mm$
- Momentum resolution
 δdp/p ~ 2%

- Radiation hardness 0.1 – 1 C cm⁻¹ y⁻¹
- Fit tight physical space
 custom design of electronics and services

The Straw Tube Central Tracker

The Central Tracker is a two-halves cylindrical device enclosing the MVD. Straw tubes have been chosen as

 π

7

$$\Delta = 2 \text{ cm}$$

$$R = 42 \text{ cm}$$

Acceptance loss due to the target pipe, from a rough geometrical calculation: $\frac{2\alpha}{2} \approx 4.5\%$

Paola Gianotti

STT Layout

- 4636 Straw tubes in 2 semi-barrels around beam/target cross-pipe
- 23-27 planar layers in 6 hexagonal sectors
 15-19 axial layers (green) // to beam axis for *x*, *y* determination;
 4 stereo double-layers for z reconstruction with ±2.89° skew angle (blue / red)

Benchmark Channels

In order to assess the performance of the Central Tracker a list of benchmark channels has been simulated to cover the full range of physics tasks for this detector.

Channel	Final state
$\overline{p}p \rightarrow (n)\pi^+\pi^-$	$(n)\pi^+\pi^-$
$\overline{p}p \to \Psi(3770) \to D^+D^-$	$2K4\pi$
$\overline{p}p \to \Lambda \overline{\Lambda}$	$p\pi^-\overline{p}\pi^+$
$\overline{p}p \rightarrow \eta_c \rightarrow \phi \phi$	4K
$\overline{p}p \to \overline{p}p$	$\overline{p}p$

Single track events have also been simulated to test STT performance.

9	Paola Gianotti	15/11/12

Particle Rates in the CT

- All numbers for innermost STT layer
- Event rate of 2×10⁷ evts/ sec (max. PANDA luminosity)

event

Particle rates

10

- \sim 5-8 kHz/ cm in forward region
- ~ 14 kHz/ cm at $z = 2\pm1$ cm
- ~ 800 kHz/ straw
- Energy losses dE per cm
 - Min: ~ 5 keV/cm from mips
 - Mean: ~ 10 keV/cm
 - Max: ~ 45 keV/cm (at θ ~ 90°)
- Charge loads $(A=5\times10^4)$:
 - ~ 0.2 C/cm/year
 - ~ 1.0 C/cm/year at ∆z ~ 2±1cm

MonteCarlo Design Study

 $10^5 \,\mu$ -single track events, generated at the I.P.

uniformly in $\varphi(0^\circ, 360^\circ)$ and $\cos\theta, \theta \in (7.8^\circ, 159.5^\circ)$

Muon's momentum fixed: 1.5 GeV/c

11

Paola Gianotti

Radiation Length

13

Paola Gianotti

Momentum resolution

Muon of different momenta have been simulated.

STT alone

MVD+STT+GEM

dE/dx capability of STT

The use of straw as tracking device is well known. The possibility to perform dE/dx was explored. Having a mean # of ST of 20/track. 3^{30} FILL EXERCISE

The dE/dx (truncated mean) vs momentum distributes on different bands depending on the mass of the particle.

Test: electrons, pions, kaons and protons

		frequencies of p.i.d. $(\%)$				
		е	μ	π	Κ	р
	е	78.9	5.2	5.6	10.1	0.2
art	π	9.0	47.2	40.7	2.9	0.2
e p	Κ	22.3	8.0	1.6	65.1	3.0
tru	р	0.1	[0.01]	0.1	1.0	98.8

efficiency (%)	true particle	purity (%)
 78.9	e	71.5
87.9	П	81.1
65.1	K	82.3
 98.8	р	96.7

15

Paola Gianotti

Separation power

Simulation results show that with an energy resolution ~ 10% we can contribute to PID in the low momentum range (<0.8 GeV/c)

Physics Channels Analysis

To evaluate vertex, mass resolute and efficiency of the overall tracsystem the following channels to been simulated:

 $\begin{array}{c} \underline{p}p \rightarrow (n)\pi^{+}\pi^{-} \ [n=2,4] \\ \underline{p}p \rightarrow \eta_{C} \rightarrow \phi\phi \rightarrow K^{+}K^{-}K^{+}K^{-} \\ pp \rightarrow \Psi(3770) \rightarrow D^{+}D^{-} \rightarrow K^{+}\pi^{+}\pi^{-}K^{-}\pi^{+}\pi^{-} \end{array}$

All channels have been simulated adding DPM bkg

Multi-pion final states

pp→(n) $\pi^+\pi^-$ [n=2,4] are the basic channels to test the STT performance. CMS energy 2.954GeV. Simulations has been performed including also DPM background events.

$pp \rightarrow \eta_C \rightarrow \phi \phi$

For the study of η_c to test the central tracker performance, the decay mode with kaons has been chosen.

Open charm

The following channel has been simulated for a beam momentum of 6.5788 GeV/c $pp \rightarrow \Psi(3770) \rightarrow D^+D^- \rightarrow K^-\pi^+\pi^+ K^+\pi^-\pi^-$

D meson mass resolution

The overall efficiency for this channel is 5.9%, and is the convolution of the acceptance and of the reconstruction efficiency. This reduces to 3.3% when the bkg is added.

22 Paola Gianotti 15/11/12

AA Events

The events have been generated with a ph.sp. distribution \rightarrow No forward peaked angular distribution. Λ decay p+ π^-

ਲ **4**0

30

20

1800

1600

1400 1200

1000

Λ reconstruction

3 sectors events

all events

just the simplest vertex finder was used no kinematic fit. Its application will improve results and lower the tail.

21.19

Other parameters

Other parameters that have to be considered are:

- Feasibility in the needed time: available infrastructures, manpower, etc...;
- Production and maintenance;
- Integration with other detectors;
- Costs and financing issues for construction and maintenance.

These more general aspects are not entering the TDR, they are subjects of discussion within the PANDA Technical and Financial Boards.