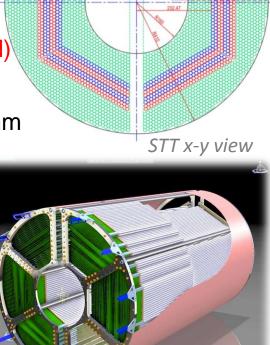


STT Design and Prototype Tests

November-15, 2012 | Peter Wintz, IKP - FZ Jülich

Review of STT Technical Design Report

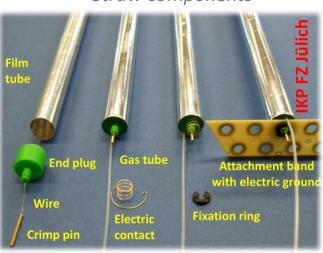
Outline


- STT Design overview
 - Mechanical setup
 - Readout system
- Prototype systems
- In-beam tests
 - COSY-STT
 - Aging studies
 - High-rate readout
- Summary

STT Layout

- 4636 straw tubes in 2 separated semi-barrels
- 23-27 planar layers in 6 hexagonal sectors
 - 15-19 axial layers (green) in beam direction
 - 4 stereo double-layers: ±3° skew angle (blue/red)
- STT dimensions
 - R_{inner}/R_{outer}: 150/418 mm, length: ~1500 + 150 mm
 - Inner / outer walls (~ 1mm Rohacell/CF)
- $X/X_0 \sim 1.23\% \ (\sim ^2/_3 \text{ tube wall } + ^1/_3 \text{ gas})$
- Time / amplitude readout
 - $\sigma_{r_0} \sim 150 \, \mu m$, $\sigma_z \sim 3.0 \, mm$ (isochrone)
 - $\sigma_E/E < 10\%$ for $\pi/K/p$ identification
- σ_p/p ~ 1 2% at B=2 Tesla

STT 3d-view



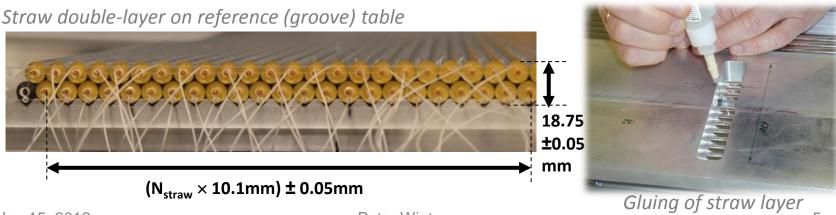
Straw Tube Materials

Minimised number of materials and material budget (thickness)

- 1) Al-mylar film, d=27 μ m, \varnothing =10mm, L=1500mm
- 2) 20µm sense wire (W/Re, gold-plated)
- End plug (ABS thermo-plastic)
- 4) Crimp pin (Cu, gold-plated)
- 5) Gas tube (PVCmed, 150µm wall)
- 6) Cathode spring (Cu/Be, gold-plated)
- 7) Attachment strip (GFK), locator ring (POM)
- $X/X_0 = 4.4 \times 10^{-4}$ per straw (2.5g weight)
- Radiation hard (p-beam tested)

Straw components

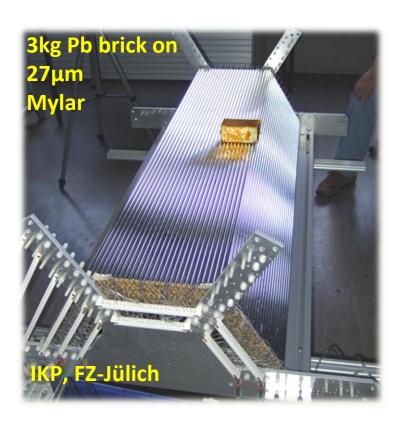
Element	Material	X [mm]	X ₀ [cm]	X/X_0
Film Tube	Mylar, 27µm	0.085	28.7	3.0×10^{-4}
Coating	Al, $2 \times 0.03 \mu m$	2×10^{-4}	8.9	2.2×10^{-6}
Gas (2bar)	Ar/CO ₂ (10%)	7.85	6131	1.3×10^{-4}
Wire	W/Re, 20μm	3×10^{-5}	0.35	8.6×10^{-6}
			Σ_{Straw}	4.4× 10 ⁻⁴

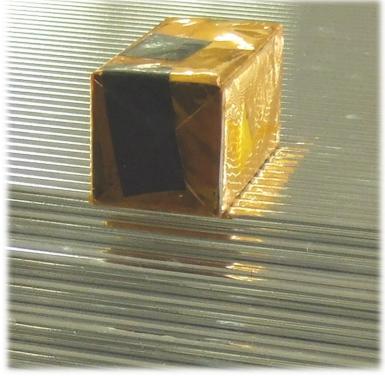


Straw Layer Modules

Novel technique, developed for COSY-STT and modified for PANDA-STT

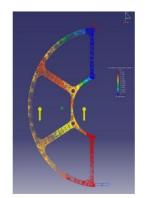
- Pressurized straws (Δp=1bar) are close-packed (< 20μm gap) in planar layers on a reference groove table and glued together (glue dots)
- Strong rigidity: multi-layer straw module is self-supporting
- No stretching from mechanical frame, no straw reinforcements needed
- Mechanical precision of wire positions: σ < 50 µm (data)
- Lowest weight, precise cylindrical geometry, maximal straw density





Self-Supporting Straw Modules

Pressurized, close-packed straw layers show a strong rigidity ...



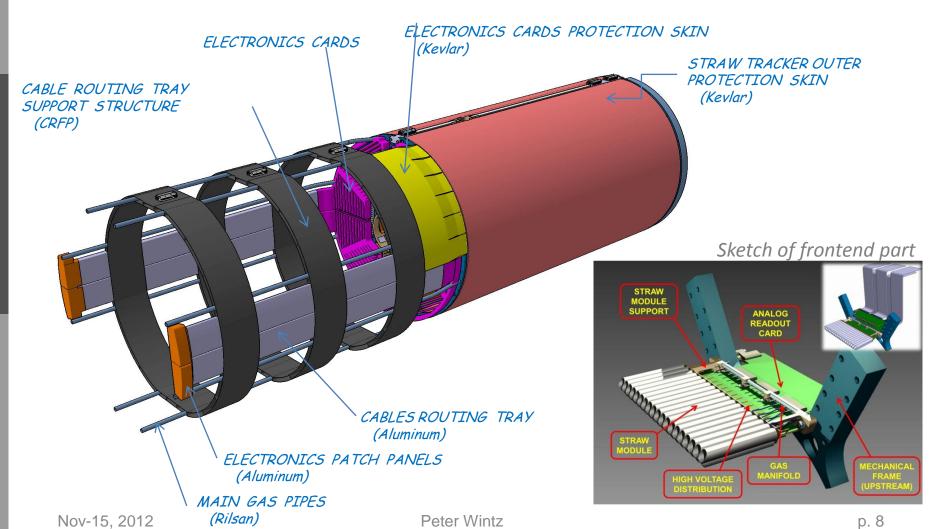
Mechanical Frame

- 2 separate semi-barrels with end flanges, connected by spacer bars
- Precision holes at the flanges to fix straw modules
- FEM analysis: 0.03mm max. deflection
- Mechanical frame weight: 2x 9 kg
- 11.6 kg Straw tubes (4636× 2.5g) with
 - strong wire stretching (230kg equiv.)
 - strong tube stretching (3.6t equiv.)

		The state of the s

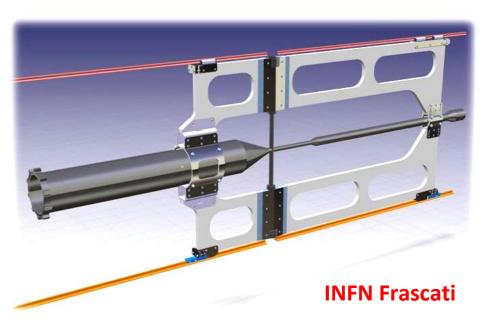
Semi-parrel components for	FEIVI analys
2 End flanges	60 N
6 Connecting bars (4 needed)	30 N
2300 Straw tubes	60 N
Straw grounding, boards	20 N
Electronics, gas supply	110 N
Total weight	280 N

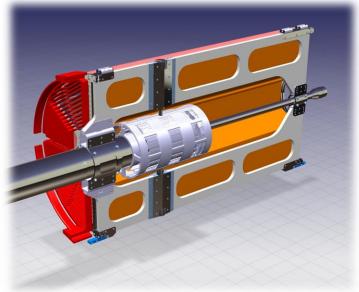
Material	Aluminum
Density	2.7 g/cm ³
Youngs modulus	70 GPa
Radiation length (X ₀)	9 cm
Thermal expansion	24 ppm/°C



Nov-15, 2012

STT Mechanical Layout





Central Tracker Mechanical System

- "Central Frame" (CF) to support all central components
 - beam pipe + Micro Vertex Detector + STT semi-barrels
- Rail system for insertion of CF in the PANDA target spectrometer

STT Readout

- 4600 straws in STT
 - ~ 10-15 pF straw capacitance, ~ 2 fC sensitivity (threshold ~ 1.2×10⁴ e⁻)
 - ~ 800 kHz per straw maximum hit rate (only inner layers)
- Drift time readout
 - ~ 200 ns drift time range, Ar/CO₂ (10%), 2 bar, 2 Tesla
 - ~ 1 ns time resolution required
- Specific energy loss measurement (dE/dx) for particle identification
 - (Indirect) amplitude readout needed to measure charge information
 - Required energy resolution $\sigma(E)/E < 10$ % for sufficient $\pi/K/p$ separation power at low momenta < 800 MeV/c (simulation)
- Readout concept to measure drift time (isochrone) + charge (dE/dx)
 - Hit rates: ~ 800 kHz (max), ~ 400 kHz (avg.)

STT Readout Concept

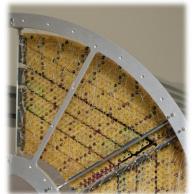
2 concepts under study to measure drift time + charge

- Amplitude measurement by FADC and FPGA readout: ∑Q
 - FADC sampling frequency 240 MHz, ~ 4.2ns sampling points
 - Pulse shape analysis realtime by FPGA: LE-Time + ∑Q
 - Amplifier-Shaper boards frontend at detector
- Signal height measurement by time-over-threshold (ToT): Q=f(ToT)
 - Amplifier-Shaper-Discriminator (ASIC): LE-Time + ToT
 - Time Readout Boards (TRB), TDC in FPGA
 - Option: analog output after 1st amplifier-shaping stage, to ADC
 - ToT method for particle-id (used at ATLAS-TRT, HADES-MDC)
 - New ASIC chip design, optimised for PANDA-STT (AGH Krakov)
- Frontend electronic design: radiation-hard and low power consumption

Prototype Productions

- STT semi-barrel (1:1) for developing assembly technique
- Mechanical frame structure (Alu) with rail system
- 3x Small-scale straw setups for readout & in-beam tests
 - 128 Straws in 8 axial layers, 1500mm length, ∅=10mm
 - 400 Straws, 8 axial + 8 stereo layers
 - 32 Straws for aging studies
- STT detector in COSY-TOF experiment
 - "Global" test system for PANDA-STT
 - Same straw design & materials, close-packed layers
 - Test of mechanical precision and spatial resolution
 - Operated in evacuated time-of-flight barrel (25m³)
- Straw readout prototypes
 - ASIC (T, ToT) + TRB for time-over-threshold method
 - Preamplifier + FADC for amplitude readout

STT Mechanical Prototype


Semi-barrel, length 1.2 m, final radial dimensions, reduced mech. frame

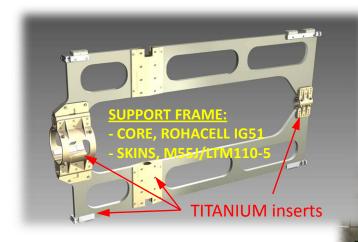
STT prototype, one semi-barrel

Hexagon sector, mounting brackets to fix modules in mechanical frame

A STT sector consists of 6 straw modules:

2 inner axial + 2 stereo

+ 2 outer axial



Central Frame Prototype

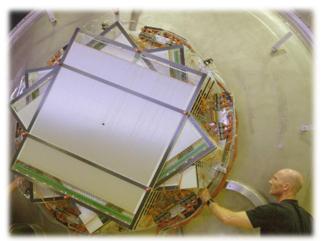
Central Frame to support beam pipe + MVD + STT

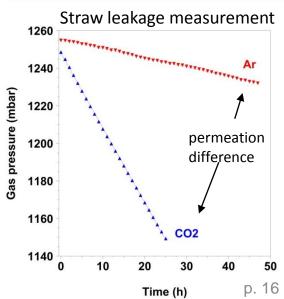
STT support frame prototype

Rail system for insertion

Prototype In-Beam Tests

- STT detector in COSY-TOF experiment at external COSY beam line
- Aging tests with straw prototype and p-beam at COSY
 - Gas mixture and straw materials, radiation hardness
- Readout tests with straw prototype systems in proton beam
 - Energy resolution of $\sigma(E) \sim 8\pm 1\%$ measured with amplitude readout
 - Setup of new ASIC readout for ToT done, optimisation of parameters
- High-rate readout tests ongoing (1-2 MHz per straw)
 - Different beam momenta, range 0.6 3 GeV/c
 - At least 2 beam times per year foreseen (COSY p/d-beam, FAIR weeks)

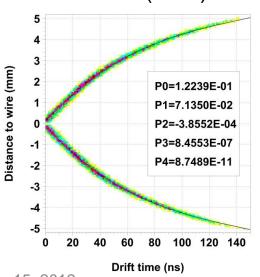

Testsystem COSY-STT

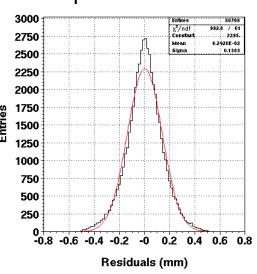

2704 straw tubes

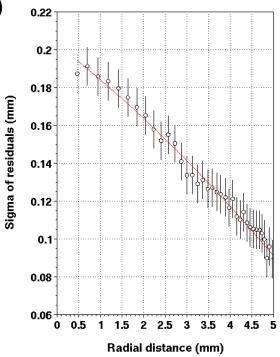
- Al-mylar: d=32µm, Ø=10mm, L=1050mm
- 13 planar double-layers, skewed by i×60°
- Embedded in CF-rohacell sandwich frames
- Ar/CO₂ (20%) at p=1.2bar
- Time readout (isochrones)

Operated in vacuum since 4 years now

- Gas leakage stays on permeation level
- No real leakage (no dissolving glue, brittle materials,..)
- Strong confidence in all straw materials and assembly techniques for PANDA-STT

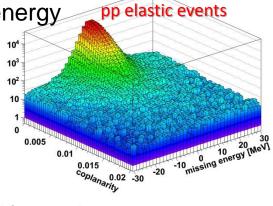


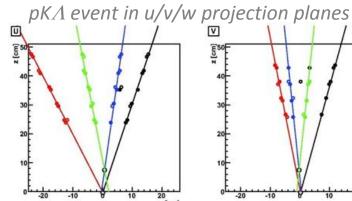


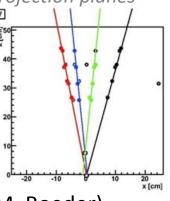


COSY-STT Spatial Resolution

- Isochrone radius drift time calibration r(t) by integration of drift time spectr.
- Global parametrisation (2700 straws) by 4th order polynomial (Fig.1)
- Track reconstruction by χ^2 fit to isochrones
- Spatial resolution by residual distribution (Fig.2, 3)
 - $\sigma_{r\Phi} = 138 \mu m, \ \sigma_{r\Phi}(r) \sim 190 90 \ \mu m$
 - Ar/CO2 (20%) at 1.25 bar pressure


COSY-STT Tracking Results

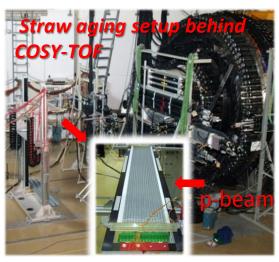

Physics: hyperon production, (pol.) p-beam on IH₂-target, p_b~3GeV/c


Reconstructed pp → pp elastic scattering events


resolutions: $\sigma \sim 110 \mu m$ vertex, 4.5 MeV missing energy

Example of reconstructed pp \rightarrow pK Λ event with delayed decay $\Lambda \to p\pi^-$ (black circle)

 $(\rightarrow Ph.D. thesis of M. Roeder)$



Aging Studies

Parasitic test setup behind COSY-TOF spectrometer

- 32 straws, L=1m, 3 diff. gas mixtures, HV current monitored per 2 straws
- p-beam, 3 GeV/c, 10 days, ~ 2.3×10⁶ s⁻¹cm⁻² (by SciFiber Hodo)
 - Straw rate: ~ 2×10⁶ s⁻¹ per 1-2 cm wire (~ 140× PANDA-straw rates)
- Measurement of gas gain (loss) by signal amplitude height from ⁵⁵Fe-source

<u>F</u> ile	<u>E</u> dit	<u>V</u> ertical	Hgriz/Acq	Irig	<u>D</u> isplay	Quisors	Meagure	<u>M</u> ath	<u>U</u> tilities	H
Tek	Stoppe	d The Case		300 Acq		W7.718W	أسيسا	7 Jun 07	14:33:06	
17		all all		7	"\	en 🚜	1	0.00	1	4
		0% 002,17		1	110					ĮŽ.
F-	TO	pea	IKS		,		- 1			
		ale code	4	-				300	1	E
2 -			m\m\		M					E
		0% 002,175			1		4		1	
I E	18	pea	aks				/	-	M.P	
E						M	' /	4	Y	
		100 100	Aber John							
s	traw18	10% 002,17	90V V08	Ma	M MA	46.64		1		410
I F			1		Y					
E	17		Jeal.	٠٨.						E
Į.	1/	pea	aks/:	וטז	us					E
E,		LOmV	Ch2	20.0r	السي	M 1.0us	25005			u:
Ch		LOmV LOmV		20.Ur	IIV.	A Ch1		800ps/pt		

3 Straw signals on scope, time structure by COSY-beam extraction

Straw no	Gas mixture @ 1.65 bar	I _{max} (μΑ)	ΣQ (C/cm) in 199h	Aging ∆G/G ₀
1 – 8	A=/CO (400/)	1.4	0.72	03%
9 – 16	Ar/CO ₂ (10%)	1.1	0.58	07%
17 – 20		2.3	1.23	no
21 – 24	Ar/CO ₂ (30%)	1.5	0.79	no
25 – 32	Ar/C ₂ H ₆ (10%)	1.7	0.87	no

Results of gas gain measurements

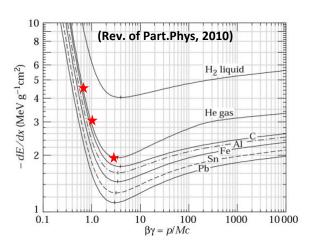
Aging Results And Strategy

Results:

- No loss seen for Ar/CO₂ (30%) and Ar/Ethane (10%)
- Small gas gain drop (<7%) seen for Ar/CO₂ (10%) in some straws
- Localized, correlated with beam intensity
- Charge load was ~ 0.6 1.2 C/cm, equiv. to ~ 5 years PANDA-STT

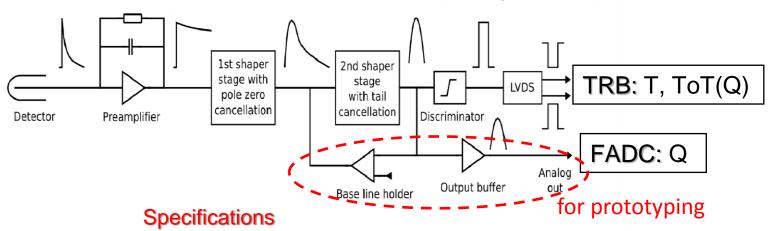
Strategy:

- Ar/CO₂ preferred gas mixture: highly tolerant to highest irradiation
- Charge loads for STT@PANDA: ~ 0.2 C/cm/year (~1 C/cm at z~2±1cm)
- No aging expected with Ar/CO₂ at mod. gas gains for 99.7% of STT during >5 years of PANDA operation at full luminosity
- Slight aging caused by low energy protons from elastic scattering may start around z=2±1cm (0.3% of STT) after 2 years
- Technique developed to replace single faulty straws in modules, saves cost / time



In-Beam Readout Tests

- Proton beam with different momenta
 - Range 0.6 3 GeV/c
- 2 straw setups with different readout systems
 - Ar/CO₂ (10%) at p=2bar
 - Orientations of setups to beam varied
- Readout with current amplifier + FADC
 - FPGA (time, ampl.) + raw mode readout
 - Sampling rate 240MHz (~4.17ns)
- Readout with Ampl-Shap-Discr (ASIC)+TRB
 - First tests with beam
 - Tuning of ASIC parameters


2 straw setups, proton beam coming from the back

ASIC Prototype For ToT-Measurement

M. Idzik, D. Przyborowski, AGH - Kraków

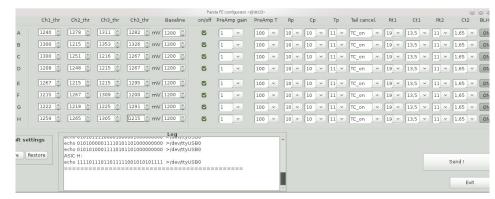
Technology: AMS CMOS 0.35µm

Input resistance \sim 120 Ω

Gain 3-20 mV/fC

Peaking time 15-40 ns

Timing resolution 1-2 ns

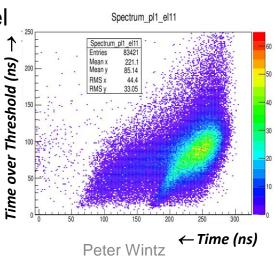

Input range 0-200 fC

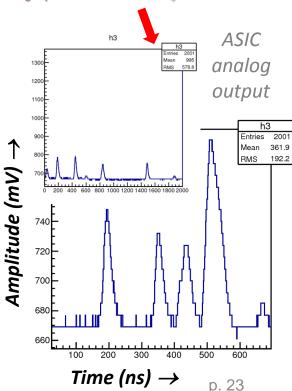
ENC noise < 0.4 fC

Digital output LVDS

Power 30 mW/ch

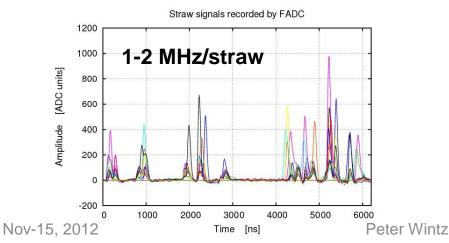
Software control of ASIC parameters: gain, t-peak, BLH, tail-ca..

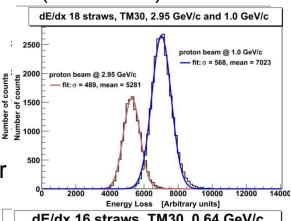


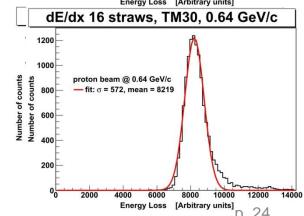


ToT-Prototype Results

- In 2012: 1st ASIC prototype, readout boards + DAQ successfully running
- Task: optimisation of ASIC parameters (software control!)
 - Verify signal shape, ion tail cancellation, baseline stability (~ 1MHz here)
 - Variable amplifier gain and peaking time
 - Additional analog output (FADC, on scope)
- P-beam momentums: 0.9 + 2 GeV/c
- Beam intensities: 2×10⁴ and 2×10⁶ s⁻¹ cm⁻²
- Both readouts in parallel
 - FADC + ToT-ASIC







First Results of Energy-Loss Measurements

- FADC-readout, dE/dx resolutions (30% truncation)
 - $\sigma_{dE/E} = 9.3\%$ (2.9 GeV/c), 8.1% (1.0 GeV/c), 7.0% (0.6 GeV/c)
 - Up to 19 straw hits per track
 - Lower beam intensity so far, ~ 100 kHz/cm
- PANDA-STT: 25 straw layers
 - $\sigma_{dE/E} \sim 7.0$ % feasible
- Dedicated high-rate beam tests started this year

Summary

- Mechanical STT construction is clear
 - Materials, designs, tools and assembly techniques verified
 - 2 (main) laboratories: INFN Frascati and FZ-Jülich
- Readout systems needs (1-2) more iterations
 - High-rate beam tests ongoing (~ 2× per year)
 - Steady access to beam time at COSY (FAIR weeks)
 - (Main) laboratories: AGH/JU/IFJ Cracow