

K-Matrix

Applications, Examples and Practical Aspects

Lectures at the "School on Concepts of Modern Amplitude Analysis Techniques"

aninnorr \quad School on Concepts of Modern

Ampilited Techniques

Summerschool, September 18-26, 2013 Flecken-Zechlin, Germany

GSI Darmstadt and GU Frankfurt
Flecken-Zechlin, September 2013

Dynamical Functions are Complicated

Search for resonance enhancements
is a major tool in meson spectroscopy

The Breit-Wigner Formula was derived
for a single resonance
appearing in a single channel

But: Nature is more complicated
Resonances decay into several channels
Several resonances appear within the same channel
Thresholds distort line shapes due to available phase space

A more general approach is needed for a detailed understanding (see last lecture!)

Relativistic Breit-Wigner

By migrating from Schrödinger's equation (non-relativistic)
to Klein-Gordon's equation (relativistic) the energy term changes different energy-momentum relation $E=p^{2} / m$ vs. $E^{2}=m^{2} c^{4}+p^{2} c^{2}$

The propagators change to $s_{R}-s$ from $m_{R}-m$

$$
T(s)=\frac{\gamma}{s_{r}-s-\imath \frac{2 q \gamma}{\sqrt{s}}}=\frac{\Gamma}{m_{r}^{2}-m^{2}-\iota \rho m_{0} \Gamma}
$$

Barrier Factors - Introduction

At low energies, near thresholds $\quad \Gamma_{r} \propto q^{2 l+1}=\rho q^{2 l}$

but is not valid far away from thresholds -- otherwise the width would explode and the integral of the Breit-Wigner diverges
It reflects the non-zero size of the object

Need more realistic centrifugal barriers

known as Blatt-Weisskopf damping factors
We start with the semi-classical impact parameter

$$
b=[L(L+1)]^{\frac{1}{2}} / q
$$

and use the approximation for the stationary solution of the radial

$$
\frac{\partial^{2}}{\partial \rho^{2}} U_{l}^{n} \rho \simeq\left(\frac{b_{n}^{2}}{r^{2}}-1\right) U_{l}^{n} \rho \quad U_{l}^{n} \rho^{r>R} i C_{n} \rho h_{l}^{(1)}(\rho) \sim C_{n} e^{l}\left(\rho-\frac{1}{2} L \pi\right)
$$

with

$$
\left[H_{l}^{n}(R / b)\right]^{-1} \equiv \rho^{2}\left|h_{l}^{(1)}(\rho)\right|^{2} \text { we obtain }
$$

$$
\Gamma_{n}\left(q_{n}\right)=\Gamma_{n}^{0} \frac{\frac{q_{n}}{m} H_{l}^{n}\left(R / b_{n}\right)}{\frac{q_{n}^{0}}{m} H_{l}^{n}\left(R / b_{n}^{0}\right)}
$$

Blatt-Weisskopf Barrier Factors

The energy dependence is usually parameterized in terms of spherical Hankel-Functions

$$
\begin{array}{rlrl}
j_{l}(x) & \equiv \frac{\pi}{2 x} \frac{1}{2} j_{1+\frac{1}{2}}(x) & \\
n_{l}(x) & \equiv \frac{\pi}{2 x} \frac{1}{2} N_{1+\frac{1}{2}}(x) & \\
h_{l}^{(1,2)}(x) & \equiv \frac{\pi}{2 x} \frac{1}{2}\left[J_{1+\frac{1}{2}}(x) \pm N_{1+\frac{1}{2}}(x)\right] & \begin{array}{l}
\text { we define } F_{l}(q) \text { with the } \\
\text { following features }
\end{array} \\
h_{0}^{(1)}(x) & =\frac{e^{l x}}{l x} & F_{l}(q) \stackrel{-e^{l x}\left(1+\frac{l}{x}\right)}{x=\frac{q}{q_{\text {scale }}}} \sqrt{\frac{\left|h_{l}^{(1)}(x)\right|^{2}}{\left|h_{l}^{(1)}(x=1)\right|}} \\
h_{1}^{(1)}(x) & =\frac{e^{l x}\left(1+\frac{3 l}{x}-\frac{3}{x^{2}}\right)}{x} & F_{l(q)}^{q \rightarrow q_{\text {scale }}} \\
h_{2}^{q \rightarrow 0} \\
h_{l}^{(1)}(x) & F_{l(q)}^{q} q^{l}
\end{array}
$$

Main problem is the choice of the scale parameter $q_{R}=q_{\text {scale }}$

$$
\begin{aligned}
F_{0}(x) & =1 \\
F_{1}(x) & =\sqrt{\frac{x}{x+1}} \\
F_{2}(x) & =\sqrt{\frac{13 x^{2}}{(x-3)^{2}+9 x}} \\
F_{3}(x) & =\sqrt{\frac{277 x^{3}}{x(x-15)^{2}+9(2 x-5)^{2}}} \\
B_{l}\left(q, q_{R}\right) & =\frac{F_{l}(q)}{F_{l}\left(q_{R}\right)}
\end{aligned}
$$

by Hippel and Quigg (1972)

Usage

$$
T_{l}(s)=\frac{B_{l}^{2}(q) \Gamma}{m_{r}^{2}-m^{2}-\iota B_{l}^{2}(q) m_{0} \Gamma}
$$

Input = Output

Outline of the Unitarity Approach

The most basic feature of an amplitude is UNITARITY

Everything which comes in has to get out again no source and no drain of probability

Idea: Model a unitary amplitude
Realization: n -Rank Matrix of analytic functions, $T_{i j}$ one row (column) for each decay channel

What is a resonance?
A pole in the complex energy plane $T_{i j}(m)$ with m being complex
Parameterizations: e.g. sum of poles

$$
\frac{1}{m_{0}-i \frac{\Gamma_{0}}{2}}
$$

T-Matrix Unitarity Relations

Unitarity is a basic feature since probability has to be conserved
T is unitary if S is unitary

$$
\sum_{j=0}^{n} S_{k j}^{*} S_{i j}=\delta_{i k}=\sum_{j=0}^{n} T_{k j}^{*} T_{i j}
$$

$$
\text { since } S=I+2 \iota T \quad \text { we get in addition } \mathfrak{I}\left[T_{i j}\right]=\sum_{n} T_{n j}^{*} T_{n i}
$$

for a single channel $\mathfrak{J}\left[T_{11}\right]=T_{11}^{*} T_{11}$

Outline of the Unitarity Approach

but there a more than one channel involved....

$$
\mathfrak{I}\left[T_{i j}\right]=T_{i 1}^{*} T_{1 j}+T_{i 2}^{*} T_{2 j}+\ldots
$$

T-Matrix Dispersion Relations

Cauchy Integral on a closed contour

$$
T_{l}(s)=\frac{1}{2 l \pi} \int_{C} \frac{T_{l}\left(s^{\prime}\right) d s^{\prime}}{s^{\prime}-s}
$$

By choosing proper contours and some limits one obtains the dispersion relation for $T_{l}(s)$

$$
T_{l}(s)=\frac{1}{\pi} \int_{-\infty}^{s_{L}} \frac{\mathfrak{J}\left[T_{l}\left(s^{\prime}\right)\right]}{s^{\prime}-s} d s^{\prime}+\frac{1}{\pi} \int_{\left(m_{1}+m_{2}\right)^{2}}^{\infty} \frac{\mathfrak{J}\left[T_{l}\left(s^{\prime}\right)\right]}{s^{\prime}-s} d s^{\prime}
$$

Satisfying this relation with an arbitrary parameterization is extremely difficult much more elsewhere.... and is dropped in many approaches

K-Matrix Definition

$S($ and $T)$ is $\mathbf{n} \times \mathbf{n}$ matrix representing \mathbf{n} incoming and \mathbf{n} outgoing channel
the Caley transformation generates a unitary matrix from a real and symmetric matrix K

$$
S=(I+\iota K)(I-\iota K)^{-1}=(I-\iota K)^{-1}(I+\iota K)
$$

then T commutes with $\mathrm{K} \quad[K, T]=0$
and is defined like

$$
T=K(I-\iota K)^{-1}=(I-\iota K)^{-1} K
$$

then T is also unitary by design

Some more properties

$$
\mathfrak{R}[T]=\left(I+K^{2}\right)^{-1} K=K\left(I+K^{2}\right)^{-1}
$$

$$
\mathfrak{I}[T]=\left(I+K^{2}\right)^{-1} K^{2}=K^{2}\left(I+K^{2}\right)^{-1}
$$

it can be shown, that this leads to

$$
\mathfrak{I}[T]=T^{*} T=T T^{*}
$$

K-Matrix - Interpretation

Each element of the K-matrix describes
one particular propagation from initial to final states

Example: пп-Scattering

1 channel

$$
|S|=1
$$

$S_{i k} S_{j k}^{*}=\delta_{i j}$

$$
S=e^{21 \delta}
$$

$K=\tan \delta$
$T=e^{l \delta} \sin \delta$
$\sigma=\left(\frac{4 \pi}{q_{i}^{2}}\right) \sin ^{2} \delta \quad D=K_{11} K_{22}-K_{12}^{2}$
$S_{11}=\eta e^{2 i \delta_{1}}$
$S_{22}=\eta e^{2 i \delta_{2}}$
$K=\left(\begin{array}{ll}K_{11} & K_{12} \\ K_{21} & K_{22}\end{array}\right)$

$S_{12}=\sqrt{1-\eta^{2}} e^{\left\lfloor\varphi_{12}\right.}, \quad \varphi_{12}=\delta_{1}+\delta_{2}$
$T=\frac{1}{1-D-l\left(K_{11}+K_{22}\right)}\left(\begin{array}{cc}K_{11}-i D & K_{12} \\ K_{21} & K_{22}-i D\end{array}\right)$

Goal: Find a reasonable parameterization

The parameters are used to model the analytic function to follow the data
Only a tool to identify the resonances in the complex energy plane Does not necessarily help to interpret the data!
Poles and couplings have not always a direct physical meaning

Problem: Freedom and unitarity

Find an approach where unitarity is preserved by construction And leave a lot of freedom for further extension

The pole nearest to the real axis or more clearly to a point with mass m on the real axis
determines your physics results

Far away from thresholds this works nicely

Relativistic Treatment

So far we did not care about relativistic kinematics
covariant description

$$
T=\{\rho\}^{\frac{1}{2}} \widehat{T}\{\rho\}^{\frac{1}{2}}
$$

or $T_{i j}=\left\{\rho_{i}\right\}^{\frac{1}{2}} \widehat{T}_{i j}\left\{\rho_{j}\right\}^{\frac{1}{2}}$
and

$$
S=I+2 \iota\{\rho\}^{\frac{1}{2}} \widehat{T}\{\rho\}^{\frac{1}{2}}
$$

with $\rho=\left(\begin{array}{cc}\rho_{1} & 0 \\ 0 & \rho_{2}\end{array}\right) \quad \rho_{1}=\frac{2 q_{1}}{m} \quad$ and $\quad \rho_{2}=\frac{2 q_{2}}{m}$
therefore

$$
\mathfrak{I}[\hat{T}]=\hat{T}^{*} \rho \widehat{T}=\widehat{T} \rho \hat{T}^{*} \quad \mathfrak{I}\left[\hat{T}^{-1}\right]=-\rho
$$

and K is changed as well $K=\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}} \quad$ and

$$
\widehat{K}^{-1}=\widehat{T}^{-1}+\iota \rho \quad \widehat{T}=\widehat{K}(I-\iota \rho \widehat{K})^{-1}=(I-\iota \widehat{K} \rho)^{-1} \widehat{K}
$$

Relativistic Treatment (cont'd)

So far we did not care about relativistic kinematics
covariant description

$$
T=\{\rho\}^{\frac{1}{2}} \hat{T}\{\rho\}^{\frac{1}{2}}
$$

with

$$
\rho=\left(\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right) \quad \rho_{1}=\frac{2 q_{1}}{m} \quad \text { and } \quad \rho_{2}=\frac{2 q_{2}}{m}
$$

in detail

$$
\begin{aligned}
& \rho_{1}=\frac{2 q_{1}}{m}=\sqrt{\left[1-\left(\frac{m_{a}+m_{b}}{m}\right)^{2}\right]\left[1-\left(\frac{m_{a}-m_{b}}{m}\right)^{2}\right]} \\
& \rho_{2}=\frac{2 q_{2}}{m}=\sqrt{\left[1-\left(\frac{m_{c}+m_{d}}{m}\right)^{2}\right]\left[1-\left(\frac{m_{c}-m_{d}}{m}\right)^{2}\right]} \\
& \rho_{i} \rightarrow 1 \text { as } m^{2} \rightarrow \infty
\end{aligned}
$$

$$
\rho_{i}=\sqrt{\left|1-\left(m_{a}+m_{b}\right)^{2} / m^{2}\right|} \quad \text { D. Asner (PDG) }
$$

$$
\begin{aligned}
\mathrm{i} \rho= & -\frac{\rho_{i}}{\pi} \log \left|\frac{1+\rho_{i}}{1-\rho_{i}}\right|,-\frac{2 \rho_{i}}{\pi} \arctan \left(\frac{1}{\rho_{i}}\right),-\frac{\rho_{i}}{\pi} \log \left|\frac{1+\rho_{i}}{1-\rho_{i}}\right|+i \rho_{i} \\
& \text { for } m^{2}<0,0<m^{2}<\left(m_{a}+m_{b}\right)^{2}, \text { and }\left(m_{a}+m_{b}\right)^{2}<m^{2}
\end{aligned}
$$

$$
-\mathrm{i} \rho=C M(s)=\frac{\rho}{\pi} \log \left(\frac{\rho+1}{\rho-1}\right)=\frac{\rho}{\pi} \log \left(\frac{1+\rho}{1-\rho}\right)-i \rho
$$

$$
\mathbf{T}^{-1}=\overline{\mathbf{K}}^{-1}+\mathbf{C M}
$$

M. Pennington (Lectures)

Analytic extrapolation of ρ

io

Relativistic Treatment - 2 channel

S-Matrix

$$
\begin{aligned}
S & =\left(I+\iota\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)\left(I-\iota\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)^{-1} \\
& =\left(I-\iota\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)^{-1}\left(I+\iota\{\rho\}^{\frac{1}{2}} \widehat{K}\{\rho\}^{\frac{1}{2}}\right)
\end{aligned}
$$

2 channel T-Matrix

$$
\begin{aligned}
& \widehat{T}=\frac{1}{1-\rho_{1} \rho_{2} \widehat{D}-\iota\left(\rho_{1} \widehat{K}_{11}+\rho_{2} \widehat{K}_{22}\right)}\left(\begin{array}{cc}
\widehat{K}_{11}-\iota \rho_{2} \widehat{D} & \widehat{K}_{12} \\
\widehat{K}_{21} & \widehat{K}_{22}-\iota \rho_{1} \widehat{D}
\end{array}\right) \\
& \widehat{D}=\widehat{K}_{11} \widehat{K}_{22}-\widehat{K}_{12}^{2}
\end{aligned}
$$

to be compared with the non-relativistic case

$$
\begin{aligned}
T & =\frac{1}{1-D-\iota\left(K_{11}+K_{22}\right)}\left(\begin{array}{cc}
K_{11}-i D & K_{12} \\
K_{21} & K_{22}-i D
\end{array}\right) \\
D & =K_{11} K_{22}-K_{12}^{2}
\end{aligned}
$$

K-Matrix Poles

Now we introduce resonances as poles (propagators)

$$
K_{i j}=\sum_{R} \frac{g_{R i}(m) g_{R j}(m)}{m_{R}^{2}-m^{2}}+c_{i j}
$$

One may add $\boldsymbol{c}_{i j}$ a real polynomial of $\boldsymbol{m}^{\boldsymbol{2}}$ to account for slowly varying background (not experimental background!!!)

$$
\widehat{K}_{i j}=\sum_{R} \frac{g_{R i}(m) g_{R j}(m)}{\left(m_{R}^{2}-m^{2}\right) \sqrt{\rho_{i} \rho_{j}}}+\hat{c}_{i j}
$$

$$
g_{R i}^{2}(m)=m_{R} \Gamma_{R i}(m)
$$

Width/Lifetime

$$
\begin{array}{r}
\Gamma_{R}(m)=\sum_{i} \Gamma_{R i}(m) \\
\Gamma_{R i}(m)=\frac{g_{R i}^{2}(m)}{m_{R}}=\gamma_{R i}^{2} \Gamma_{R}^{0}\left[B_{R i}^{l}\left(q, q_{R}\right)\right]^{2} \rho_{i}
\end{array}
$$

For a single channel and one pole we get

$\left.T=e^{i \delta} \operatorname{sn} \delta=\left[\frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)}\right]\left[B^{\prime}\left(q, q_{0}\right)\right]^{2}\left(\frac{\rho}{\rho_{0}}\right)\right]$| $\mathrm{T}=+\mathrm{i}$ |
| :--- |
| Pole |
| That $=+\mathrm{i}$ rho |

Strange effects in subdominant channels

Scalar resonance at $1500 \mathrm{MeV} / \mathrm{c}^{2}, \Gamma=100 \mathrm{MeV} / \mathrm{c}^{2}$
All plots show חח channel
Blue: пп dominated resonance ($\Gamma_{\pi \pi}=80 \mathrm{MeV}$ and $\Gamma_{\kappa \bar{K}}=20 \mathrm{MeV}$)
Red: $K \bar{K}$ dominated resonance ($\Gamma_{K \bar{K}}=80 \mathrm{MeV}$ and $\Gamma_{\pi \pi}=20 \mathrm{MeV}$)

Look at the tiny phase motion in the subdominant channel

Example: 2x1 K-Matrix Overlapping Poles

two resonances overlapping with different (100/50 MeV/c²)
widths are not so dramatic (except the strength)

The width is basically added

$$
T=\frac{m_{0}\left[\Gamma_{a}(m)+\Gamma_{b}(m)\right]}{m_{0}^{2}-m^{2}-i m_{0}\left[\Gamma_{a}(m)+\Gamma_{b}(m)\right]}
$$

Example: 1×2 K-Matrix Nearby Poles

$$
\begin{aligned}
& \text { Two nearby poles }\left(m=1.27 \text { and } 1.5 \mathrm{GeV} / \mathrm{c}^{2}\right) \\
& \text { show nicely the effect of unitarization } \\
& K=1.2
\end{aligned}
$$

Example: Flatté 1×2 K-Matrix

2 channels for a single resonance at the threshold of one of the channels
with $\quad \gamma_{1}^{2}+\gamma_{2}^{2}=1$

Leading to the T-Matrix

$$
\begin{aligned}
\widehat{K}_{11} & =\frac{\gamma_{1}^{2} m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}} \\
\widehat{K}_{22} & =\frac{\gamma_{2}^{2} m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}} \\
\widehat{K}_{12} & =\widehat{K}_{21}=\frac{\gamma_{1} \gamma_{2} m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}}
\end{aligned}
$$

$$
\hat{T}=\frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma_{0}\left(\rho_{1} \gamma_{1}^{2}+\rho_{2} \gamma_{2}^{2}\right)}\left(\begin{array}{cc}
\gamma_{1}^{2} & \gamma_{1} \gamma_{2} \\
\gamma_{1} \gamma_{2} & \gamma_{2}^{2}
\end{array}\right)
$$

and with

$$
\begin{aligned}
& g_{i}=\gamma_{i} \sqrt{m_{0} \Gamma_{0}} \\
& g_{1}^{2}+g_{2}^{2}=m_{0} \Gamma_{0}
\end{aligned}
$$

$$
\hat{T}=\frac{\left(\begin{array}{cc}
g_{1}^{2} & g_{1} g_{2} \\
g_{1} g_{2} & g_{2}^{2}
\end{array}\right)}{m_{0}^{2}-m^{2}-\iota\left(\rho_{1} g_{1}^{2}+\rho_{2} g_{2}^{2}\right)}
$$

 Flatte n!
\qquad Flatte KK

Example

 $a_{0}(980)$ decaying into $п \eta$ and $K \bar{K}$Au, Morgan and Pennington (1987)

$$
K_{i j}=\frac{s-s_{0}}{4 m_{K}^{2}} \sum_{r} \frac{g_{r, i} g_{r, j}}{\left(s_{r}-s\right)\left(s_{r}-s_{0}\right)}+\sum_{\eta}
$$

$$
\equiv\left(s-s_{0}\right) \widehat{K}_{i j}
$$

Amsler
$K_{i j}=\sum_{r} \underline{g_{r}}$.
$K_{i j}(S)=\left(K_{i}\right.$

P-Vector Definition

But in many reactions there is no scattering process but a production process, a resonance is produced with a certain strength and then decays

Aitchison (1972) $\quad F=(I-I K)^{-1} P=T K^{-1} P$

$$
\widehat{F}=(I-i \widehat{K} \rho)^{-1} \widehat{P}=\widehat{T} \widehat{K}^{-1} \widehat{P} \quad \text { with } \quad F=\{\rho\}^{\frac{1}{2}} \widehat{F} \quad \text { and } \quad P=\{\rho\}^{\frac{1}{2}} \widehat{P}
$$

P-Vector Poles

The resonance poles are constructed as in the K-Matrix

$$
P_{i}=\sum_{R} \frac{\beta_{R}^{0} g_{R i}(m)}{m_{R}^{2}-m^{2}} \quad \widehat{P}_{i}=\sum_{R} \frac{\beta_{R}^{0} g_{R i}(m)}{\left(m_{R}^{2}-m^{2}\right) \sqrt{\rho_{i}}}
$$

and one may add a polynomial \boldsymbol{d}_{i} again $\quad P_{i} \rightarrow P_{i}+d_{i}$

For a single channel and a single pole

$$
\widehat{F}(m)=\beta \frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)} B^{l}\left(q, q_{0}\right)
$$

If the K-Matrix contains fake poles...
for non s-channel processes modeled in an s-channel model
...the corresponding poles in P are different

A different Ansatz with a different picture: channel n is produced and undergoes final state interaction

$$
\begin{aligned}
& Q=K^{-1} P \quad \text { and } \quad\{\rho\}^{\frac{1}{2}} Q=\widehat{Q} \text { and } \widehat{Q}=\widehat{K}^{-1} \widehat{P} \\
& F=T Q \quad \text { and } \hat{F}=\widehat{T} \widehat{Q}
\end{aligned}
$$

For channel 1 in 2 channels

$$
F_{1}=T_{11} Q_{1}+T_{12} Q_{2}
$$

N/D Method

To get the proper behavior for the left-hand cuts
Use $N_{l}(s)$ and $D_{l}(s)$ which are correlated by dispersion relations

$$
T_{l}(s)=\frac{N_{l}(s)}{D_{l}(s)}
$$

An example for this is the work of Bugg and Zhou (1993)

$$
\begin{aligned}
K_{i j}= & \left(\frac{s-2 m_{\pi}^{2}}{s}\right)\left(\frac{\alpha_{i} \alpha_{j}}{s_{A}-s} \frac{\beta_{i} \beta_{j}}{s_{B}-s} \frac{\gamma_{i} \gamma_{j}}{s_{C}-s}+a_{i j}+b_{i j} s\right) \\
N_{\pi \pi}(s)= & N_{11}(s)=\left(c_{1}+c_{2} s\right) K_{11}+i \rho_{2}\left(c_{3}+c_{4} s\right) \\
& \left(K_{11} K_{22}-K_{12} K_{21}\right) \\
N_{\eta \eta}(s)= & N_{22}(s)=c_{1} K_{22}+i \rho_{2} c_{3}\left(K_{11} K_{22}-K_{12} K_{21}\right)
\end{aligned}
$$

Complex Analysis Revisited

The Breit-Wigner example

$$
T=e^{\iota \delta} \sin \delta=\left[\frac{m_{0} \Gamma_{0}}{m_{0}^{2}-m^{2}-i m_{0} \Gamma(m)}\right]\left[B^{l}\left(q, q_{0}\right)\right]^{2}\left(\frac{\rho}{\rho_{0}}\right)
$$

show, that $\Gamma(m)$ implies $\rho(m)$

$$
\Gamma_{R i}(m)=\frac{g_{R i}^{2}(m)}{m_{R}}=\gamma_{R i}^{2} \Gamma_{R}^{0}\left[B_{R i}^{l}\left(q, q_{R}\right)\right]^{2} \rho_{i}
$$

Each $\rho(m)$ which is a square root,
one obtains two solutions for $p>0$ or $p<0$ respectively

Complex Analysis Revisited (cont'd)

one obtains two solutions for $p>0$ or $p<0$ respectively

$$
p>0
$$

$$
p<0
$$

$$
\begin{aligned}
& \rho_{a}=\sqrt{\frac{2|q|}{m}} \\
& \rho_{b}=-\sqrt{\frac{2|q|}{m}}
\end{aligned}
$$

$$
\rho_{a}=\iota \sqrt{\frac{2|q|}{m}}
$$

$$
\rho_{b}=-i \sqrt{\frac{2|q|}{m}}
$$

But the two values ($w=2 q / m$) have some phase in between and are not identical

So you define a new complex plane for each solution, which are 2^{n} complex planes, called Riemann sheets they are continuously connected. The borderlines are called CUTS.

Usual definition

sheet	$\operatorname{sgn}\left(\mathrm{q}_{1}\right) \operatorname{sgn}\left(\mathrm{q}_{2}\right)$	
I	+	
+		
II	-	
III	-	
IV	+	

Complex Momentum Plane

States on Sheets of the Energy Plane

Singularities appear naturally where

$$
T\left(E+\frac{\Gamma}{2}\right)=0
$$

A Im(E) physical plane - Sheet I $\operatorname{Re}(E)$

Singularities might be

1 - bound states
2 - anti-bound
states
3 - resonances
or
artifacts due to wrong treatment of the model

States on Momentum Sheets

\rightarrow complex
momentum plane

Singularities might be

1 - bound states
2 - anti-bound states
3 - resonances

Im(q)
$\operatorname{Im}\left(\mathrm{q}_{2}\right)$

Left-hand and Right-hand Cuts

The right hand CUTS (RHC) come from the open channels in an n channel problem

But also exchange processes and other effects introduce CUTS on the left-hand side (LHC)

Nearest Pole Determines Real Axis

The pole nearest to the real axis or more clearly to a point with mass m on the real axis
determines your physics results

Far away from thresholds this works nicely

At thresholds, the world is more complicated

While $\rho(770)$ in between two thresholds has a beautiful shape the $f_{0}(980)$ or $a_{0}(980)$ have not

Pole and Shadows near Threshold (2 Channels)

For a real resonance one always obtains poles on sheet II and III due to symmetries in $T_{\text {I }}$
$\hat{T}_{l}(q)=\hat{T}_{l}^{*}\left(-q^{*}\right) \quad$ and $\quad \hat{T}_{l}(s)=\hat{T}_{l}^{*}\left(s^{*}\right)$
Usually
$\Gamma_{r}^{\mathrm{BW}} \approx \frac{1}{2}\left(\Gamma_{r}^{I I}+\Gamma_{r}^{I I I}\right)$

To make sure that pole and shadow match and form an s-channel resonance, it is mandatory to check if the pole on sheets II and III match

Done by artificially changing ρ_{2} smoothly from q_{2} to $-q_{2}$

t-channel Effects (also u-channel)

They may appear resonant and non-resonant
Formally they cannot be used with Isobars
But the interaction is among two particles
To save the Isobar Ansatz (workaround)
they may appear as unphysical poles in K-Matrices or as polynomial of s in K-Matrices background terms in unitary form

Rescattering

No general solution
Specific models needed

Problems of the method are

 performance (complex matrix-inversions!)numerical instabilities
singularities
unitarity constraints
for P-Vectors
cut structure
behavior at left- and right-hand cuts

Problems of the method are

 unmeasured channels yield huge problems if numerous or dominantsystematic errors of the experiment relative efficiency, shift in mass, different resolutions
damping factors (sizes) for respective objects

Problems in terms of interpretation are

 mapping K-Matrix to T-Matrix poles number might be differentbranching ratios
K-matrix strength is unequal T-matrix coupling

Problems in terms of interpretation are

validity of P-vectors
all channels need to have identical production processes FSI has to be dominant
singularities
not all are resonances limit of the isobar model

K-Matrix is a good tool
if one obeys a few rules
ideally one would like to use an unbiased parameterization which fulfills everything
use the best you can for your case and document well, what you have done

