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Dynamical Functions are Complicated 

Search for resonance enhancements  
is a major tool in meson spectroscopy 
 
The Breit-Wigner Formula was derived  
for a single resonance  
appearing in a single channel 
 
But: Nature is more complicated 

Resonances decay into several channels 
Several resonances appear within the same channel 
Thresholds distort line shapes due to available phase space 

 
A more general approach is needed  
for a detailed understanding (see last lecture!) 
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Relativistic Breit-Wigner 

By migrating from Schrödinger‘s equation (non-relativistic) 
to Klein-Gordon‘s equation (relativistic) the energy term changes 
different energy-momentum relation E=p2/m vs. E2=m2c4+p2c2 

 
The propagators change to sR-s from mR-m 
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Intensity I=ΨΨ* Phase δ Argand Plot 



Barrier Factors - Introduction 

At low energies, near thresholds 
but is not valid far away from thresholds -- otherwise the width 
would explode and the integral of the Breit-Wigner diverges 
It reflects the non-zero size of the object 

Need more realistic centrifugal barriers  
known as Blatt-Weisskopf damping factors 

We start with the semi-classical impact parameter 
 
 

and use the approximation for the stationary solution of the radial 
differential equation 

 
 

 
with 

    we obtain 
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Blatt-Weisskopf Barrier Factors 

The energy dependence is usually parameterized in terms of spherical 
Hankel-Functions 

 
 
 
 
 

      we define Fl(q) with the 
      following features 

 
 
 
 
 
 
 
 
Main problem is the choice of the scale parameter qR=qscale 
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Blatt-Weisskopf Barrier Factors (l=0 to 3) 

 
 
 
 
 
 
 
 
 
 
 
Usage 

6 

by Hippel and Quigg (1972) 



Input = Output 7 



Outline of the Unitarity Approach 

The most basic feature of an amplitude is UNITARITY 
Everything which comes in has to get out again 
no source and no drain of probability 
 

Idea: Model a unitary amplitude 
Realization: n-Rank Matrix of analytic functions, Tij 

one row (column) for each decay channel 
 

What is a resonance? 
A pole in the complex energy plane Tij(m)  

with m being complex 
Parameterizations: e.g. sum of poles 
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T-Matrix Unitarity Relations 

Unitarity is a basic feature since probability has to be conserved 
 
T is unitary if S is unitary 
 
 
 
 
since                                we get in addition 
 
 
 
 
 
 
 
for a single channel 

9 

= 

π 

π 

π 

π 

π 

π 

π 

π 

π 

π 

π 

π 

= 

π 

π 



Outline of the Unitarity Approach 

but there a more than one 
channel involved…. 
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T-Matrix Dispersion Relations 

Cauchy Integral on a closed contour 
 
 
 
 
By choosing proper contours and some 
limits one obtains the dispersion relation 
for Tl(s) 
 
 
 
 
 
Satisfying this relation with an arbitrary 
parameterization is extremely difficult 
and is dropped in many approaches 
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much more elsewhere…. 



K-Matrix Definition 

S (and T) is n x n matrix representing  
n incoming and n outgoing channel 
 
the Caley transformation generates a 
unitary matrix from a real and symmetric 
matrix K 
 
 
then T commutes with K 
and is defined like 
 
 
then T is also unitary by design 
 
Some more properties 
 
it can be shown, that this leads to 
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K-Matrix - Interpretation 

Each element of the K-matrix describes  
one particular propagation from initial to final states 
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Example: ππ-Scattering 

1 channel 2 channels 
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Unitarity, cont‘d 

Goal: Find a reasonable parameterization 
The parameters are used to model the analytic function to follow the 
data 
Only a tool to identify the resonances in the complex energy plane 
Does not necessarily help to interpret the data!  
Poles and couplings have not always a direct physical meaning 

 
Problem: Freedom and unitarity 

Find an approach where unitarity is preserved by construction 
And leave a lot of freedom for further extension 
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Nearest Pole Determines Real Axis 

The pole nearest to the real axis 
or more clearly to a point with 
mass m on the real axis 

determines your physics results 
 
Far away from thresholds this 
works nicely 
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Relativistic Treatment 

So far we did not care about relativistic kinematics 
 
covariant description 
 

  or 
 

  and 
 
with 
 
therefore 
 
and K is changed as well                                            and 
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Relativistic Treatment (cont’d) 

So far we did not care about relativistic kinematics 
 
covariant description 
 
with 
 
 
in detail 
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Analytic extrapolation of ρ 19 
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Analytic extrapolation of ρ 20 
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and ρ2 = ρKK . The charged and neutral K channels are usually

assumed to have the same coupling constant but different phase

space factors, due to mK+ != mK0 ; the result is

ρKK =
1

2




√

1−
(

2mK±

mKK

)2

+

√

1−
(

2mK0

mKK

)2


 . (18)

The effect of using this expression compared to using the

averaged kaon masses is confined in the region very near

threshold and is significant only in between the two kaon

thresholds. If the coupling of a resonance to the channel opening

nearby is strong, the Flatté parametrization shows a scaling

invariance and does not allow for an extraction of the parameters

individually, but only of ratios [27].

Further improvements:

The K–matrix described above usually allows one to get

a proper fit of physical amplitudes and it is easy to deal

with. However, it also has an important deficit: it violates

constraints from analyticity — e.g., ρii has a pole at s = 0,

and for unequal masses develops an unphysical cut. An analytic

continuation of the amplitudes into the complex plane is not

controlled, and typically the parameters of broad resonances

come out wrong (see, e.g., the minireview on scalar mesons).

A method to improve the analytic properties was suggested in

Refs. [25,28–30]. It basically amounts to replacing the phase-

space factor iρi in Eqs. 9 and 14 with an analytic function that

produces the identical imaginary part. In the simplest case of a

channel with equal masses the expressions are

−ρi

π
log

∣∣∣∣
1 + ρi

1 − ρi

∣∣∣∣ , −2ρi

π
arctan

(
1

ρi

)
, −ρi

π
log

∣∣∣∣
1 + ρi

1 − ρi

∣∣∣∣ + iρi

for m2 < 0, 0 < m2 < (ma + mb)
2, and (ma + mb)

2 < m2,

respectively. Here ρi =
√

|1 − (ma + mb)2/m2| for all values

of m2, extending the expression of Eq. (4) into the regime

below threshold. The more complicated expression for the case

of different masses can be found, e.g., in Ref. 29.

Branching Ratios from Dalitz Plot Fits: A fit to the

Dalitz plot distribution using either a Breit-Wigner or a K-

matrix formalism factorizes into a resonant contribution to
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of S-wave interactions, such an imaginary part is embodied in the Chew-Mandelstam function,
which for equal mass scattering is

CM(s) =
ρ

π
log

(

ρ + 1

ρ − 1

)

=
ρ

π
log

(

1 + ρ

1 − ρ

)

− iρ (86)

with ρ =
√

1 − 4m2/s . Then

T−1 = K
−1

+ CM , (87)

where K is a modified K-matrix and the second term on the right hand side is the Chew-
Mandelstam function in matrix form with diagonal elements. As a more general example,
for a two-body threshold with unequal mass particles A, B, we define s2 = (ma + mb)

2 and
s1 = (ma − mb)

2 and

βi =

√

1 −
si

s
, (88)

then the phase-space for the AB system is

ρ(s) =
2p√

s
= β1β2 . (89)

This determines the Chew-Mandelstam function for the AB-channel to be

CM(s) =
β 2

2

π

√

s1

s2
log

(

mb

ma

)

+
β1β2

π
log

(

β2 + β1

β2 − β1

)

, (90)

defined so that CM(s2) = 0. When ma = mb, Eq. (88) becomes Eq. (86), as β1 = 1. Fitting
data for baryonic channels incorporating the Chew-Mandelstam function has been used by the
SAID Group as Ron Workman will discuss and more recently by the Bonn-Gatchina group in
2011.
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Relativistic Treatment – 2 channel 

S-Matrix 
 
 
 
2 channel T-Matrix 
 
 
 
 
 
to be compared with the non-relativistic case 
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K-Matrix Poles 

Now we introduce resonances 
as poles (propagators) 
 
One may add cij a real polynomial 
of m2 to account for  
slowly varying background 
(not experimental background!!!) 
 
Width/Lifetime 
 
 
 
For a single channel and one pole we get 
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Pole 
That=+i rho 



Example: 1x2 K-Matrix 24 

Strange effects in subdominant channels 
 
Scalar resonance at 1500 MeV/c2, Γ=100 MeV/c2 
All plots show ππ channel 
Blue: ππ dominated resonance (Γππ=80 MeV and ΓKK=20 MeV) 
Red: KK dominated resonance (ΓKK=80 MeV and Γππ=20 MeV) 
 
Look at the tiny phase motion in the subdominant channel 

Intensity I=ΨΨ* Phase δ Argand Plot 



Example: 2x1 K-Matrix Overlapping Poles 

 
 
 
 
 
 
 
 
 
 
two resonances overlapping with different (100/50 MeV/c2) 
widths are not so dramatic (except the strength) 
 
The width is basically added 
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FWHM 

FWHM 

2 BW 
K-Matrix 

Intensity I=ΨΨ* Argand Plot 



Example: 1x2 K-Matrix Nearby Poles 

Two nearby poles (m=1.27 and 1.5 GeV/c2) 
show nicely the effect of unitarization 
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Example: Flatté 1x2 K-Matrix 

2 channels for a single resonance at the 
threshold of one of the channels 
 
with 
 
 
 
 
Leading to the T-Matrix 
 
 
 
and with 
 

   we get 

27 



Flatté 

Example 
a0(980) decaying 
into πη and KK 
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BW πη 
Flatte πη 
Flatte KK 

Intensity I=ΨΨ* Phase δ 

Real Part Argand Plot 



K-Matrix Parameterizations 

Au, Morgan and Pennington (1987) 
 
 
 
 
Amsler et al. (1995) 
 
 
 
Anisovich and Sarantsev (2003) 
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P-Vector Definition 

But in many reactions there is no scattering process but a production 
process, a resonance is produced with a certain strength and then decays 
 
 
 
 
 
Aitchison (1972) 
 

    with 
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P-Vector Poles 

The resonance poles are constructed as in the K-Matrix 
 
 
 
 
and one may add a polynomial di again 
 
 
For a single channel and a single pole 
 
 
 
 
If the K-Matrix contains fake poles... 

for non s-channel processes modeled in an s-channel model 
...the corresponding poles in P are different 
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Q-Vector 

A different Ansatz with a different 
picture: channel n is produced and 
undergoes final state interaction 
 
 
 
 
 
For channel 1 in 2 channels 

32 



N/D Method 

To get the proper behavior for the left-hand cuts 
Use Nl(s) and Dl(s) which are correlated by dispersion 
relations 
 
 
 
 
An example for this is the work of Bugg and Zhou (1993) 
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Complex Analysis Revisited 

The Breit-Wigner example 
 
 
 
shows, that Γ(m) implies ρ(m) 
 
 
 
 
Each ρ(m) which is a square root,  
 
one obtains two solutions for p>0 or p<0 respectively 
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Complex Analysis Revisited (cont’d) 

one obtains two solutions for p>0 or p<0 respectively 
 
 
 
 
 
 
But the two values (w=2q/m) have some phase in between 
and are not identical 
 
 
 
 
 
So you define a new complex plane for each solution, 
which are 2n complex planes, called Riemann sheets 
they are continuously connected. The borderlines are called CUTS. 
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Riemann Sheets in a 2 Channel Problem 

Usual definition 
 
sheet  sgn(q1) sgn(q2) 
I    +    + 
II    -    + 
III    -    - 
IV    +    + 
 
 
Implication 
 
 
 

Complex Energy Plane 
 
 
 
 
 
 
 
 
Complex Momentum Plane 
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States on Sheets of the Energy Plane 

Singularities appear  
naturally where 

Singularities 
might be 
 
1 – bound states 
2 – anti-bound 

 states 
3 – resonances 
 
or 
 
artifacts due to 
wrong treatment 
of the model 
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States on Momentum Sheets 

à  complex  
momentum plane 
 
Singularities might be 
 
1 – bound states 
2 – anti-bound states 
3 – resonances 
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Left-hand and Right-hand Cuts 

The right hand CUTS (RHC) come from the open 
channels in an n channel problem 
 
 
 
 
 
 
 
 
 
 
 
 
 

But also exchange processes and other effects 
introduce CUTS on the left-hand side (LHC) 
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Nearest Pole Determines Real Axis 

The pole nearest to the real axis 
or more clearly to a point with 
mass m on the real axis 

determines your physics results 
 
Far away from thresholds this 
works nicely 
 
At thresholds, the world is more 
complicated 

While ρ(770) in between two 
thresholds has a beautiful shape 
the f0(980) or a0(980) have not 
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Pole and Shadows near Threshold (2 Channels) 

For a real resonance one always 
obtains poles on sheet II and III 
due to symmetries in Tl 

 

 
 

Usually 
 
 
 

To make sure that pole and  
shadow match and form an  
s-channel resonance, it is  
mandatory to check if the  
pole on sheets II and III  
match 
 

Done by artificially changing 
ρ2 smoothly from q2 to –q2 
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t-channel Effects (also u-channel) 

They may appear resonant and non-resonant 
Formally they cannot be used with Isobars 

But the interaction is among two particles 
To save the Isobar Ansatz (workaround) 

they may appear as unphysical poles in K-Matrices 
or as polynomial of s in K-Matrices 
background terms in unitary form 
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Rescattering 

No general solution 
Specific models needed 
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Handling K-Matrices and P-Vectors 

Problems of the method are 
performance (complex matrix-inversions!) 
 
numerical instabilities 

 singularities 

  
unitarity constraints 

 for P-Vectors 
 

cut structure 
 behavior at left- and right-hand cuts 
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Handling K-Matrices and P-Vectors 

Problems of the method are 
unmeasured channels 

 yield huge problems if numerous or dominant 
 
 
 

systematic errors of the experiment 
 relative efficiency, shift in mass, different resolutions 
 
 
 

damping factors (sizes) for respective objects 
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Handling K-Matrices and P-Vectors 

Problems in terms of interpretation are 
mapping K-Matrix to T-Matrix poles 

number might be different 
 
 

branching ratios 
 K-matrix strength is unequal T-matrix coupling 
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Handling K-Matrices and P-Vectors 

Problems in terms of interpretation are 
validity of P-vectors 

 all channels need to have identical production processes 
 FSI has to be dominant 
 
 

singularities 
not all are resonances  limit of the isobar model 
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Summary 

K-Matrix is a good tool 
 
if one obeys a few rules 
 
ideally one would like to use an unbiased 
parameterization which fulfills everything 
 
use the best you can for your case and 
document well, what you have done 

48 


