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Dynamical Functions are Complicated

Search for resonance enhancements
iS @ major tool in meson spectroscopy

The Breit-Wigner Formula was derived
for a single resonance
appearing in a single channel

But: Nature is more complicated
Resonances decay into several channels
Several resonances appear within the same channel
Thresholds distort line shapes due to available phase space

A more general approach is needed
for a detailed understanding (see last lecture!)




Relativistic Breit-Wigner
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By migrating from Schrodinger's equation (non-relativistic)
to Klein-Gordon's equation (relativistic) the energy term changes
different energy-momentum relation E=p2/m vs. E2=m?2c*+p2c?

The propagators change to si-s from mg-m

T(s) ! )
S)= =
Sr—S—l% m?Z —m? —ipmql




Barrier Factors - Introduction

At low energies, near thresholds [ q2[+1 = quI

but is not valid far away from thresholds -- otherwise the width
would explode and the integral of the Breit-Wigner diverges

It reflects the non-zero size of the object
Need more realistic centrifugal barriers

known as Blatt-Weisskopf damping factors q/,
We start with the semi-classical impact parameter L/L"

b=[L(L+ 1)]%/67

and use the approximation for the stationary solution of the radial

differential equation
p——=Lmn

1
—Ulnp ~ |21 U?p Ulo = iCnph( )(p) ~ Cpe 2

with 1 1 - rO%Hf’(ﬂ/bn)
[HP(R/b)] ™" = p?|h{ )(p)|? we obtain "%y (R/b0)




Blatt-Weisskopf Barrier Factors

The energy dependence is usually parameterized in terms of spherical
Hankel-Functions

: . n1
Iy = =2 1)
= 3N, (%)
n\x) = —
() 2x 13
L2y = 2
AP0 = =7 (1,100 N, 100
2X 2 2 we define F(qg) with the
1) elX following features
hO (X) = K .

(X ! X=qsc?ale |hf )(X)lz
hiV(x) = — \Ih " c=1)
e (Hi_i) (@) TTE

2 q- [
h(zl)(X) = 1 X X FI(Q) - q
X

Main problem is the choice of the scale parameter g;=q. ../




Fo(x) = 1
x
Fi(x) =
3 13x2
R (x —3)% + 9x
~ 277x3
3 = x(x —15)2 +9(2x — 5)2
Fi(q)
Bi(q,qr) = FI(aR)
-sage s) = BZ(q)l
0= m2 —m? — thlz(q)moF

by Hippel and Quigg (1972)




Input = Output

8.13 Electricity Generation,
Transmission & Distribution Losses
Electricity
Y Generation

Lost Enorgy
( 55.1 ]

Usoful Enorgy
42.8




Outline of the Unitarity Approach

The most basic feature of an amplitude is UNITARITY
Everything which comes in has to get out again
no source and no drain of probability

Idea: Model a unitary amplitude
Realization: n-Rank Matrix of analytic functions, 7
one row (column) for each decay channel

What is a resonance?

A pole in the complex energy plane 7,(m)
with m being complex A m

Parameterizations: e.g. sum of poles [J2 |-===~ °

1
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T-Matrix Unitarity Relations

Unitarity is a basic feature since probability has to be conserved

T is unitary if S is unitary
Z SkjSU =Oik = Z TU

since S=I+21T we get in addition J Tu ZT Thi

for a single channel  3[T11]=T};T11




Outline of the Unitarity Approach

but there a more than one

channel involved.... -
3Ty =TAT1j+TAT2+...
T T 11: :11
T T T
T T T T K T
PSS B ¢
TC T T T K T




T-Matrix Dispersion Relations

Cauchy Integral on a closed contour

1 Ti(s)ds’
T(s)=—-—— y
2m Jco S"—S

By choosing proper contours and some
limits one obtains the dispersion relation
for T,(s)

S ~ / 0
e[ 20 1

—00 S,_S T

Satisfying this relation with an arbitrary
parameterization is extremely difficult
and is dropped in many approaches

3[Tu(sN)] e

/
(mi+my)2 S —S5

much more elsewhere....
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K-Matrix Definition

S (and T) is n x n matrix representing
n incoming and n outgoing channel

the Caley transformation generates a
unitary matrix from a real and symmetric
matrix K

S=I+K){I-K)1=0-K)1g+K)

then T commutes with K [K,T] =0
and is defined like

T=K(I-1K)"1=0-wK)"1k
then T is also unitary by design

R[T] = ((+K3) lk=k(@+Kk?)1

Some more properties 3[T] I+ K2)_1K2 _ KZ(I+ K2)_1

it can be shown, that this leads to ~ J[T1=T"T=TT"*




K-Matrix - Interpretation

Each element of the K-matrix describes
one particular propagation from initial to final states

TU N TU S TU R R
N Kll R N I<12

TU TU TU K

R n, R K
K , | K

K T K K




Example: nn-Scattering g £(980)

1 channel

SI=1

S = 6215

K=tané

T = esiné

4m\ ,
o= — | sin o
d;

1
2 channels i
T
*
S[ijk=5ij o "
S11 = ne%dl 0 04 08 12 16
S,y = n g262 1 channel | 2 channels

1/1-n? e'12, @12 = 61+62

K — ( K11 Ki2 )
K21 K22

N
[
N

I

T_ 1 (Kll—iD K12 )
1-D—u(Ki1+K2)\ K21 Kz2—1D

D=K11K2> — K%Z




Unitarity, cont'd
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Goal: Find a reasonable parameterization

The parameters are used to model the analytic function to follow the
data

Only a tool to identify the resonances in the complex energy plane
Does not necessarily help to interpret the data!
Poles and couplings have not always a direct physical meaning

Problem: Freedom and unitarity
Find an approach where unitarity is preserved by construction
And leave a lot of freedom for further extension
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Nearest Pole Determines Real AxXis

A

-
|
>

Im(q)

Re(q)

The pole nearest to the real axis

or more clearly to a point with
mass m on the real axis

determines your physics results

Far away from thresholds this
works nicely




Relativistic Treatment

So far we did not care about relativistic kinematics

1 1
covariant description T'={p}2T {p}2
1. 1
or Ti=A{pi}2 T {pj}2
1. 1
i o[ PL O _%n _292
with p_(o pz) pl—m and pz—m

therefore 3 ['T'] =T*pT=TpT* 3 ['T'—l] =—p

1 1
and K is changed as well K={p}2Z K {p}2 and

-

K1=T"14p T =K(I-pK) 1 =(U-iKp)~1K




Relativistic Treatment (cont’d)

So far we did not care about relativistic kinematics

1 1
covariant description T'={p}2T {p}2
with _(Pl 0 ) _ﬂ o _Zﬂ
p = 0 p> P1 = m P2 = m
in detail
: p— -
p =ﬁ= 1 m_+m, 1 m -m,
L' m m m
: — -
p =ﬁ= 1. m_+m, 1 m_ -m,
. m m m

p.—1 as m’ -
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Analytic extrapolation of p
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Analytic extrapolation of p

— \/|1 — (ma + mb)Z/mz‘ D. Asner (PDG)
: : 1 - 2 1 - 1 :
0= —&log TP —iarctan : —&log TP + 10;
s 1 — pi T pi m 1 —p;

for m?> < 0, 0 < m? < (mg +my)?, and (mg + myp)? < m?,

: p+1 L+ .

T! =K'+ CM M. Pennington (Lectures)




Analytic extrapolation of p

- classic irho(m2) a
.real
.I.n.-].ag.,..l.'I...I...I....I.
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Relativistic Treatment - 2 channel

S-Matrix
S = (I+d{p}? R{p}2)(I - {p}? R{p}2)]
1 1 1 1
= (I-t{p}2 K{p}2) U+ {p}2 K{p}?)

2 channel T-Matrix

T = . (/211:1;025 K12 )

1 - p1p2D — p1K11 + p2K22) K21 K22 —1p1D
B =R11R22 - K2,
to be compared with the non-relativistic case

T = 1 ( K11 — (D K12 )
1-D-uKi1+Kz22) K21 K2 —-1D

D=K11K2> — K]z_2




K-Matrix Poles

Now we introduce resonances | Z grilm)ggrj(m)
as poles (propagators) = m,% —m?2

One may add c;; a real polynomial -~ QRz(m)gR/(m)
y j poly Kij—Z

of m?2 to account for (m —m ) /Psz “y
slowly varying background

(not experimental background!!!) g2 (m) = mgrTri(M)
Ri _
Width/Lifetime rr(m) = Z Mrilm)
2
gri(m)
rri(m) = 2B =42 MO [BL (q, qr)]° p;
mRg
For a single channel and one pole we get
T=+i
mol o P
T=elsns=|— , [BY(q. 90)1° (—) Pole
mg — m? — imor(m) 00

That=+i rho



Example: 1x2 K-Matrix

Im(T)

| Argand Plot | | Phased |
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Strange effects in subdominant channels

Scalar resonance at 1500 MeV/c?, '=100 MeV/c?
All plots show nn channel

| Intensity I=WW* |

| | | L

0'|H
1.1 1

o b b b by g T
2 13 14 15 16 17 ;.8
m [GeV/c']

Blue: nn dominated resonance (I",,=80 MeV and I,x=20 MeV)
Red: KK dominated resonance ([,z=80 MeV and I,,=20 MeV)

Look at the tiny phase motion in the subdominant channel




Example: 2x1 K-Matrix Overlapping Poles

Argand Plot Intensity I=Yy~
E14/ ] £ 2 f
g ‘ { ] §18' ZBW )
1.2]] e K-Matrix
16
1 ; 14°
84 12
6 1"
4 0.8
Py 06"
_ 04
: 0.2-
0'2’7.\..‘|,HJH.JH,Jl.,m,,\.,m,,mi oL —— 1
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two resonances overlapping with different (100/50 MeV/c?)
widths are not so dramatic (except the strength)
The width is basically added mo[Fa(m) + Fp(m)]

T =

m§ — m?2 —img[Fa(m) + p(m)]
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Two nearby poles (m=1.27 and 1.5 GeV/c?)
show nicely the effect of unitarization

- mqal'a(m) mplp(m)
~ 2 _ 2 2
mg—m<s  mi—m?

rr(m) =Y (ma

) ( 7 ) [B2(q, qr)1>
m dr




Example: Flatté 1x2 K-Matrix

2 channels for a single resonance at the

threshold of one of the channels 2 y%mol"o
11 =
S mg — m?
N ’Yzmol_'o
K2 = —5——
mg—m
N . Y1¥2molo
Ki2 = K21 = —5——
Leading to the T-Matrix
= _ molo ( V2 1172 )
m§—m2 —imolo(p1Y] +p2¥3) \ 1172 73
and with
2
g7 9192
gi=7Yivmolo ( )
N weget | 9192 95
2 | 2 _ =
g1 +95=molo mg —m?2 — (p19% +p293)




Flatté
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K-Matrix Parameterizations

Au, Morgan and Pennington (1987)

K — 5—502 dr,i9r,j +§
T am2 S (sr-s)(sr—s0) 4

= (s-— So)k\[j

Amsler e
C f,(400-1200)
1.4 —
K.. — gl", 1.2 [~ 950(980)
t] C l £,(1510)
T 1.0 - l
= sb £,(1720)

Anisovicl esf

0.4

r — SA
Kl(S) = ) o2 3 ' £,(1370)
J yi | AT TN PN IE] | Ry~ P
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P-Vector Definition

. ¢
BT
riva

Sog
%’. T Y

But in many reactions there is no scattering process but a production
process, a resonance is produced with a certain strength and then decays

T K

> >

_> Pl » _> Pz »

n K

Aitchison (1972) F=(—-K)"1P=TK™1pP

~ ~ ~ A~ T 1 1
F=(U-iKp)"'P=TK™ P with F={p}2 F and P={p}2 P

. K

TK
recoil




P-Vector Poles

The resonance poles are constructed as in the K-Matrix

B2 gri(m) _ BR gri(m)
P;= P; =
l ; m,%—m2 ;(m%—mz)m

and one may add a polynomial d; again  P; — P; + d;

For a single channel and a single pole

molo

F(m) = B—

B'(g. q0)
mg — m? — imol(m)

If the K-Matrix contains fake poles...

for non s-channel processes modeled in an s-channel model
...the corresponding poles in P are different




Q-Vector

A different Ansatz with a different
picture: channel n is produced and
undergoes final state interaction

Q)
Il
)

L

)

1 ~
O=K1p and {p}20=0 and
F=TQ and I?='T'(3

For channel 1 in 2 channels

F1=T1101+T120>




N/D Method

To get the proper behavior for the left-hand cuts

Use N,(s) and D,(s) which are correlated by dispersion
relations

An example for this is the work of Bugg and Zhou (1993)

Ky = T o _Pbj Y, +aj+ byjs
S SA—SSB—SSc—S
Nnr(s) = Ni1(s)=(c1+c25)K11+ ip2(Cc3+ C45)

(K11K22 — K12K21)
Npn(s) = N22(s) =c1K2 +ip2¢c3(K11K22 — K12K21)




Complex Analysis Revisited

The Breit-Wigner example

_ molo P
T = eYsiné = 5 : } [BY(q, g0)1? (—)
mg —m< —imol(m) PO

shows, that r(m) implies p(m)

glzu(m)
mRg

Mri(m) = =20 [BL (q,qr)] %0

Each p(m) which is a square root,

one obtains two solutions for p>0 or p<0 respectively
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Complex Analysis Revisited (cont’d)

one obtains two solutions for p>0 or p<0 respectively

p>0 p<O

Pa=% Pa=l%
2 2

pp = —y/2d pp = —u/2d

But the two values (w=2g/m) have some phase in between
and are not identical

(P (0

Jw—Vw* =/ |w e2+e 2 =cosh2

2 ‘go=0

So you define a new complex plane for each solution,
which are 2" complex planes, called Riemann sheets
they are continuously connected. The borderlines are called CUTS.




Riemann Sheets in a 2 Channel Problem

Im(E) 4 Complex Energy Plane

Usual definition I v
: >  Re(E)
sheet | sgn(q,) sgn(q,) 11 | 11
I + +
11 - + KK-threshold
I1I - - nn-threshold
IV + +
Complex Momentum Plane
Implication Irn(qz)A
(TIN ™ = (1) ™ + 10, | 1

vl Re(as)

KK-threshold
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States on Sheets of the Energy Plane

Singularities appear N Singularities
naturally where T(E+ ‘E) =0 might be

1 - bound states

2 — anti-bound
states

3 — resonances

o—0— > Re(E) or
1 1

4 Im(E) physical plane - Sheet I

artifacts due to

4 Im(E) unphysical plane - Sheet II Wrong treatment

of the model
@ 3*

O > Re(E)
2 03




States on Momentum Sheets

> complex
momentum plane

Singularities might be
1 - bound states

2 — anti-bound states
3 — resonances

Im(

)
3

KK-threshold

" Re(q,)



Left-hand and Right-hand Cuts

The right hand CUTS (RHC) come from the open
channels in an n channel problem

left-hand cuts
4m*-4m/’
T | A
AM=MS | Im(E)
\\ > Re(E)

right-hand cuts

But also exchange processes and other effects
introduce CUTS on the left-hand side (LHC)




Nearest Pole Determines Real AxXis

The pole nearest to the real axis

or more clearly to a point with

mass m on the real axis
determines your physics results

Far away from thresholds this
works nicely

At thresholds, the world is more
complicated

p(770)
I A I\Y%
I1 11
f,(980)
I - 1A%
11 I
f,(1270)
I A IV
I1 I

While p(770) in between two
thresholds has a beautiful shape

the f,(980) or a,(980) have not




Pole and Shadows near Threshold (2 channels)

For a real resonance one always
obtains poles on sheet II and III

due to symmetries in T,
T(@)=Tr(-g*)  and

Usually

1
P s = (P41

To make sure that pole and
shadow match and form an
s-channel resonance, it is
mandatory to check if the
pole on sheets II and III
match

Done by artificially changing
p, smoothly from g, to -q,

T(s)=T,(s*)

Im(E) 4 nn-threshold

+KR—’rh reshold

> Re(E)

®o—
O _

g
_®

11

[11



t-channel Effects (also u-channel)

They may appear resonant and non-resonant
Formally they cannot be used with Isobars

But the interaction is among two particles

To save the Isobar Ansatz (workaround)

they may appear as unphysical poles in K-Matrices
or as polynomial of s in K-Matrices

background terms in unitary form
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Rescattering

No general solution
Specific models needed
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Handling K-Matrices and P-Vectors

Problems of the method are
performance (complex matrix-inversions!)

numerical instabilities
singularities

unitarity constraints
for P-Vectors

cut structure
behavior at left- and right-hand cuts




Handling K-Matrices and P-Vectors

Problems of the method are

unmeasured channels
yield huge problems if numerous or dominant

systematic errors of the experiment
relative efficiency, shift in mass, different resolutions

damping factors (sizes) for respective objects




Handling K-Matrices and P-Vectors

Problems in terms of interpretation are

mapping K-Matrix to 7-Matrix poles
number might be different

branching ratios
K-matrix strength is unequal T-matrix coupling




Handling K-Matrices and P-Vectors

Problems in terms of interpretation are

validity of P-vectors
all channels need to have identical production processes
FSI has to be dominant

singularities
not all are resonances limit of the isobar model




Summary

K-Matrix is a good tool
if one obeys a few rules

ideally one would like to use an unbiased
parameterization which fulfills everything

use the best you can for your case and
document well, what you have done




