
Complex calculus: 
Complex integrals
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Real calculus  ∫ab dx f(x)

Complex calculus  ∫C dz f(z) C = curve in z-plane
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Z

C
f(z)dz =

Z 1

t=0
f(z(t))

dz

dt
dt = lim

|�zn|!0,N!1

NX

n=1

f(an)�zn

Line integrals: given a curve C in the complex plane 
parametrized by a real  number 0≤ t ≤1, t →z(t) = x(t) + iy(t) 
the integral of f over C is defined by 

Δzn  = zn - zn-1

C

z(1) = zNz(0) = z0

zn-1
znan

note: this is an ordered path 
We can estimate the integral: if |f(z)|≤M > 0 along C then 

|
Z

C
f(z)dz|  Ms where s it the length

of the path 

Cauchy-Goursat theorem: If f(z) is holomorphic in some 
region G and C is a closed contour (consisting of 
continuous or discontinuous cycles, double cycles, etc.) 
then I

f(z)dz = 0 (converse is also true) 
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Proof: according to Stoke’s theorem Z

S
(~r⇥ ~A) · d~S =

I

C

~A · d~l

~B ⌘ ~r⇥ ~A(e.g. Magnetic flux                   over open surfaces = 
circulation of vector potential over its boundary)                      ~A d~l

d~S
~B

C
S

Z

S

✓
@A

y

@x

� @A

x

@y

◆
dxdy =

I
(A

x

dx+A

y

dy)

use: Ay = u(x,y), Ax = v(x,y) then                    and  l.h.s=0 @A

y

@x

=
@A

x

@yI
(vdx+ udy) = 0

use: Ay =v(x,y), Ax = -u(x,y) then                    and  l.h.s=0 @A

y

@x

=
@A

x

@yI
(�udx+ vdy) = 0

(Cauchy relation for u,v)

I
f(z)dz =

I
[u+ iv][dx+ idy] =

I
[udx� vdy] + i

I
[vdx+ udy] = 0

z
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The Cauchy integral formula: if f(z) holomorphic in G, z0 ∈ G, 
and C a closed curve (cycle), which goes around z0 once in 
positive (counterclockwise) direction, then  

f(z0) =
1

2⇡i

I

C

f(z)dz

z � z0

z0 C

G

The Cauchy formula solves a boundary-value problem. The values of the function on C 
determine its value in the interior. There is no analogy in the theory of real functions. It is 
related though to the uniqueness of the Dirichlet boundary-value problem for harmonic 
functions (in 2dim) 
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Proof:

I

C0

f(z)dz

z � z0
= 0

z0 Cε

C’ = Cε + L1 + L2 + R

ε

z0 C L1

L2

R

ε

limε→0 Cε = C limε→0 L1 = -L2

Z

R

f(z)dz

z � z0
= f(z0)

Z

R

dz

z � z0
+

Z

R

f(z)� f(z0)

z � z0
dz

ε→0:
z � z0 = ✏ei�

�2⇡i O(✏) ! 0

�2⇡if(z0) +

Z

C
= 0

0 =

I

C0
= lim

✏!0

Z

L1

+

Z

L2

+

Z

R
+

Z

C✏

�
= lim

✏!0

Z

R
+

Z

C✏
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(very) useful formula 

I =

Z b

a
dx

f(x)

x� c� i✏

a bc+iε

1

x� c� i✏

=
x� c+ i✏

(x� c)2 + ✏

2

1

x� c� i✏

=
x� c+ i✏

(x� c)2 + ✏

2
= P.V.

1

x� c

+
i✏

(x� c)2 + ✏

2

I = P.V.I + i⇡f(c)
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Examples 

Z

�
dz

Z

�
zndz

Z

�

dz

z

Z

�0

dz

z

Z

�

dz

z2

γ = unit circle

γ’ = unit square

Derivatives: f(z)g(z) 

Integrals: 

of elementary functions (may) have singularities  
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Series Expansion: 

Series expansion approximates the function near a point.

Complex functions are determined by their singularities and series 
expansion will also “probe” their singularity structure.  
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 Holomorphic functions are “very smooth”, e.g. existence of 1st derivative implies 
existence of infinite number of derivatives. This is not true for real functions, e.g. 

f(x) =

⇢
x

2
for x � 0

�x

2
for x < 0

f

0(x) = 2|x| so f’(0) = 0 but
  f’’(0) does not exist 

f(x) =

⇢
e

� 1
x

2
for x 6= 0

0 for x = 0

all derivative vanish at x=0, f(k)(0) = 0, and 
the resulting (trivial) Taylor series does not 
reproduce the function

Hadamard’s formula: The sum of powers ∑ an zn defines a 
holomorphic function inside the circle of convergence R 
given by

1

R
= limn!1|an|1/n
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this is the Taylor series 

f(z) =
1

2⇡i

I
f(z0)dz0

z0 � z
=

1

2⇡i

I
f(z0)

z0 � a

1

1� z�a
z0�a

dz0

for |z’-a| > |z-a| we have:   

z

C
z’

a
z-a

z’-a

or integrating each term :

f(z) =
1

2⇡i

I
f(z0)

z0 � a


1 +

z � a

z0 � a
+

(z � a)2

(z0 � a)2
+ · · ·

�

f(z) = f(a) + f 0(a)(z � a) +
1

2!
f 00(a)(z � a)2 + · · ·

If f(z) is holomorphic in G, a ∈ G and C is a cycle:
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 If f(z) is holomorphic between two circles C1 and C2 and z is 
a point inside the ring, and a is a point inside the small circle 
C1 then  

the expansions are convergent on C2 and C1 respectively

z

C1 a

C2 1

z0 � z
=

1

z0 � a


1 +

z � a

z0 � a
+ · · ·

�

= � 1

z � a


1 +

z0 � a

z � a
+ · · ·

�

f(z) =
1

2⇡i

✓I

C1

f(z0)dz0

z0 � z
�

I

C2

f(z0)dz0

z0 � z

◆

we have:

A⌫ =
1

2⇡i

I

C2

f(z0)dz0

(z0 � a)⌫+1 ⌫ � 0

A⌫ =
1

2⇡i

I

C1

f(z0)dz0

(z0 � a)⌫+1 ⌫ < 0

An =
f (n)(a)

n!
, (n = ⌫ � 0)

on C2 

on C1 

This is Laurent series

f(z) =
1X

⌫=�1
A⌫(z � a)⌫ = · · · A�2

(z � a)2
+

A�1

z � a
+A0 +A1(z � a) +A2(z � a)2 + · · ·
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Classification of singularities 
Assume radius of C1 is 0, i.e. f(z) is holomorphic in C2 -{a} 

called “deleted neighborhood” of a

z
a

C2

z

C1 a

C2

f(z) =
1X

⌫=�1
A⌫(z � a)⌫ =

A�m

(z � a)m
+

A�m+1

(z � a)m�1
+ · · ·

X

n=0

An(z � a)n

 2 π i A-1 = ∮ dz f(z)

point a is called a pole of order m, if m=∞ it is called an 
essential singularity, if m=1 it is called a simple pole (or just 
a pole). A-1 plays a special role since 

A-1 is called the residue.
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Examples:

z
C1 : |z|=1

a=0

C2: |z| = R

since f(z) is holomorphic for |z| > 1,R can be chosen as 
large as one pleases. This implies An must be 0 for all n 
> 0 (otherwise ∑ An zn would diverge for large |z| = R, 
contrary to being holomorphic)   

For |z| > 1 Laurent series is 

f(z) =
1

z(z � 1)
=

1

z


1

z

1

1� 1
z

�
=

1

z2
+

1

z3
· · ·

f(z) =
1

z(z � 1)

a=0 is NOT essential singularity because G is not a “deleted 
neighborhood” (radius of C1  is finite)
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Example:

z
C1 → 0

a=0

C2: |z| = 1

For 0< |z| < 1 G = “deleted neighborhood” of a=0 and 
the  Laurent series is 

f(z) =
1

z(z � 1)

this shows (as expected) that a=0 is a simple 
pole with residue A-1 = -1 

f(z) =
1

z(z � 1)
= �1

z

�
1 + z + z2 + · · ·

�
= �1

z
� 1� z � z2 · · ·
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Application of 

 2 π i A-1 = ∮ dz f(z)

This is likely the most common used consequence of complex calculus,
since it can be also applied to compute real integrals  
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Suppose you want to compute  

f(z) =
eirz

z2 +m2

with m,r > 0 

f(z = Rei� with R ! 1) ! 0 (very fast)

R ➞∞ zp = im
�1 +1

C1

f(z ⇠ zp) =
eirz

z2 +m2
=

eirz

(z + im)(z � im)
⇠ e�rm

2im

1

z � zp
=A-1Z 1

�1
dx

e

irx

x

2 +m

2
=

⇡

m

e

�rm

Z 1

�1
dp

eirp

p2 +m2

consider an integral of f(z) over a contour C

I
dzf(z) =

Z 1

�1
dxf(x) +

Z

C1

f(z)dz !
Z 1

�1
dxf(x)
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Which branch cut to use

Examples to consider

Z 1

�1
dx

1p
1� x

2

Z 1

1
dx

1

x

p
x

2 � 1
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Dispersion relations

source emits a 
signal at t=0

causality: receiver 
receives at t>0 and 

not at t<0

amplitude of the signal

consider the Fourier transform (E  → energy)

and extend definition to complex plane E → z, 
then f(z) is holomorphic for Im E > 0

The idea is to determine all singularities of f(E). Once this is 
done one can reconstruct f(E) outside the region of 
singularities. 

f(t) / ✓(t)

f(E) ⌘
Z

dteiEtf(t)
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Im E > 0 amplitudes 
holomorphic

Im E = 0

E + iε

Im E = 0, Re E < 0 
amplitudes have 

singularities 
(bound states = 

poles)

E = 0E = -|Eb|

no scattering for 
Re E < 0, at E=0 

change in physics 
→ branch point 

Singularities of f(E) in the complex E-plane

Suppose f(E) was also analytical for Im E ≤ 0 and  f(∞) → 0 
Then f(E) = constant ! 

( f(E) = Σn fn En   and infinite radius of convergence implies f1,f2,.. = 0) 

fphysical(E) = lim
✏!0

f(E + i✏)
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E2 = +1E1 = -1

f(E) =
a1

E � E1
+

a2
E � E2

+
X

n=0

bnE
n

Reconstruction of amplitudes from its singularities : 
dispersion relations 

Need to specify behavior at ∞

1. f(∞) → const bn = 0, n>0

2. f(∞) → 1/s  bn = 0

3. f(∞) → 1/s2  bn = 0, a1 = -a2

Example (1)

Friday, September 20, 13



E2 = +1E1 = -1

f(E) =
a1

E � E1
+

a2
E � E2

+
X

n=0

bnE
n

Reconstruction of amplitudes from its singularities : 
dispersion relations 

Need to specify behavior at ∞

1. f(∞) → const bn = 0, n>0

2. f(∞) → 1/s  bn = 0

3. f(∞) → 1/s2  bn = 0, a1 = -a2
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Example (2)
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in addition f(0)=1, and is analytical everywhere else what 
is f(E) ? Can f(∞) be a constant ?

0

in scattering, Dis f(E) is related to observables (unitarity)  
f(0) is “subtraction constant”: one trades the large-s’ 
behavior for small-s one

Dis. f(E) = f(E + i✏)� f(E � i✏) = 2i
p
E for E > 0

E

E0 = R± i✏

=
1

2⇡i

Z 0

�1
dE0 f(E0 � i✏)

E0 � i✏� E
+

Z 1

0
dE0 f(E0 + i✏)

E0 + i✏� E
+

Z

R
· · ·

f(E) =
1

2⇡i

I
dz

f(z)

z � E

=
1

2⇡i

Z 1

0
dE0 2i

p
E0

E0 � E
+

1

2⇡

Z

R
d�f(Rei�)

const.
f(E) = �

p
�E + 1
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Relativistic scattering  

a

b

c
_

d
_

s = (pa + pb)
2

t = (pa + pc̄)
2 = (pa � pc)

2

u = (pa + pd̄)
2 = (pa � pd)

2

A(s,t) for s > 4m2 t < 0 describes a + b → c + d
A(s,t) for s > 0   t < 4m2 describes a + c → b + d

_ _

A(s,t) for u > 0   s < 4m2 describes a + d → b + c
_ _

s+ t+ u =
X

i

m2
i = 4m2
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In relativistic scattering 

E
s = M2 +m2 + 2EM

a+ b ! c+ d

ϴ

A(s, cos ✓) = A(s, t)

s+ t+ u =
4X

i=1

m2
i

In S-matrix theory it is assumed that a single complex 
function A(s,t,u) describes all reactions related by crossing

a+ d̄ ! c+ b̄
similarly to s for                       , the variable u is  related 
to energy for the reaction 

a+ b ! c+ d

since u = ∑m2 - s - t if A(u) is holomorphic for Im u > 0 it is 
also holomorphic in s for Im s < 0
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Analytical continuation:
How from knowledge of 

f(s,t,u) in one region (e.g. t-
channel) we can find it in 

other region (e.g. u-channel)  

S.Mandelstam 

t

u
s

s-channel

t-channel

u-channel
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Analytical continuation
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For real functions it does not work

x

f(x)

f(x) = �1

f(x) =
1

x

2

but for complex functions you can go 
continuously around the z=0 singularity 

and analytically continue from one 
region to another 
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Theorem: If f(z) is holomorphic on G and f(z)=0 on an arc 
A in G, then f(z)=0 everywhere in G

Proof: f(z)=0 on A implies f’(z)=0 on A, because we can 
take the limit Δz→0 along the arc. Thus all derivatives 
vanish along A. Then by Taylor expansion around some 
point z0 of A, f(z) = ∑f(n)(z0)(z-z0)n/n! = 0, for z inside some 
circle C. Now we take another arc A‘ along f(z)=0, etc. 
Continuing this process everywhere in G we prove the 
theorem.  

If f(z) is holomorphic on G then f(z) is uniquely defined by 
its values on an arc A in G.
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Analytical continuation  
Let f1(z) be holomorphic in G1 and f2(z) in G2, G1 and G2 
intersect on an arch A (or domain D), and f1 = f2 on A (or 
D) then f1 and f2 are analytical continuation of each other 
and  

f(z) =

⇢
f1(z), z 2 G1

f2(z), z 2 G2

is holomorphic in the union of G1 and G2

G1

G2

A
D
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Examples:

1 + z + z2 + · · · is holomorphic in |z|<1
Z 1

0
e�(1�z)tdt is holomorphic in Re z < 0

�(1 + 1/z + 1/z2 + · · · ) is holomorphic in |z|>1

all these functions represent f(z) = 1/(1-z) in different 
domains, which is holomorphic everywhere except at 
the point  z=1
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Γ(z) function:

Γ(z+1) = zΓ(z) : generalization of factorial 
n! = n (n-1)! so Γ(n) = (n-1)!

�(z) =

Z 1

0

dt

t
tze�t

�(0) ⇠ log 0 �(�1) ⇠ 1

0
�(�n) ⇠ 1

0n

�(z) = lim
n!1

n!nz

z(z + 1) · · · (z + n)

for z~-n

�(z) ⇠ (�1)n

n!

1

z + n
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Why would you ever care about the Γ function (?) 

Infinite number of poles

If QCD were 
confined it would 
have ∞ of poles !

J(M2) =
1

2⇡�
M2 = ↵0M2
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relativistic h.o. 

string of 
relativistic 
oscillators 

! ! 3⇡

A(s, t) =
�(�J(s))�(�J(t))

�(�J(s)� J(t))

QCD, loop 
representation, 
large-Nc, AdS/
CFT, ...

 string 
revolution
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how analytical continuation 
happens in practice for 
scattering amplitudes

S.Mandelstam 

t

u
s

s-channel

t-channel

u-channel
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f(s, t) =
X

n

fn(s)t
n

f(s, t) =
X

n

f 0
n(t)s

n

Disc. fn(s) 6= 0unitarity in s-channel

unitarity in t-channel Disc. f 0
n(t) 6= 0

s-channel sum 
over t must 
diverge to 

reproduce a t-
channel 

singularity in t 
(and vice versa) 

sum over n in s-channel p.w. is replaced by an integral 
(Mandelstam)

A(s, t) =

Z
dt1dt2K(s, t1, t2, t)A(s, t1)A

⇤(s, t2)
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Continuation of integral representation
g(w) =

Z

C
f(z, w)dz

Let D be a neighborhood of the arc C and G be a domain in 
the w-plane, f(z,w) be regular in both variables, except for a 
finite number of isolated singularities  or branch points.

what are the possibilities for g(w) to be singular? 

g(w) can be singular at w0 ∈ G only if 

1. f(z,w0) in z-plane has a singularity coinciding with the end 
points of the arc C (end-point singularity)
2. two singularities of f, z1(w) and z2(w), approach the arc C 
from opposite sides and pinch the arc precisely at w=w0. 
(pinch singularity) 
3. a singularity z(w) tents to infinity as w→w0 deforming the 
contour with itself to infinity; one has to change variables to 
bring the point ∞ to the finite plane to see what happens.  
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Examples
Apparent singularities need not be one! 

f(z) =

Z 1

�1

dx

x� z

looks like a regular function 
of z in the entire plane except 
for  the interval z ∈ [-1,1]

C = [-1,1]

as long a z does 
not hit the C f(z) 
changes smoothly 

-1 1

z

C

when z approaches deforming 
C allows to define a function 
f(z) which continues changing 

... however when z returns to the original 
we end up with a different function value. 
f(z) is multivalued and -1 is a branch point.

C’
-1 1
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f(z) =

Z 1

�1

dx

x� z

if we don’t deform the contour, then f(z) is analytical 
everywhere except on the real axis between [-1,1]

�1� z

�1

1� z

i✏

+1

z = z0 + i✏

z0

�1� z

�1

1� z

+1
z0

⇡

�i✏
z = z0 � i✏

0

f(z0 � i✏) = (log |1� z0|+ 0i)� (log |1 + z0|+ i⇡) = log

|1� z0|
|1 + z0|

� i⇡

f(z) jumps as z crosses the real axis, f(z0+iε)-f(z0-iε) = 2π. We say f(z) has a cut [-1:1] in 2π 
is the value of the discontinuity across the cut (happens to be constant) i.e. f(z) is analytical 
everywhere except [-1:1] 

f(z0 + i✏) = (log |1� z0|+ 0i)� (log |1 + z0|� i⇡) = log

|1� z0|
|1 + z0|

+ i⇡

f(z) = Log(1� z)� Log(�1� z)

�⇡ 0
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f(z) =

Z 1

�1

dx

x� z

how distorting contour makes f(z) continuos 
e.g. take z = 0 + iε and move towards 0 - iε

f(i✏) = +i⇡

C’
-1

�i✏

+i✏

f(�i✏) =?

✏�✏

f(0) =

Z

C0

dx

x� 0
=

Z �✏

�1

dx

x

+

Z 1

✏

dx

x

+

Z 0

�⇡

id�✏e

i�

✏e

i�

= log ✏� log ✏+ i⇡ = i⇡

as promised, f(z) varies smoothly as z crosses the real axis (provided the contour is 
distorted) It is no longer discontinuous across [-1:1]
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we can define (single-valued)  f(z) in a different domain, e,g with a cut [-∞,-1]

f(z) =

Z

C0

dx

x� z

Z �1

0

idy

�1+ iy � z
Z 1

�1

dx

x� i1� z

Z 0

�1

idy

1+ iy � z

�1+ i0

�1�1i +1�1i

+1+ 0i

C’

f(z) = �2z

Z 1

1

dx

x

2 � z

2

Z �1

�1

dx

x� z

=

Z 1

1

dx

x+ z

Z 1

1

dx

x� z

= �
Z 1

1

dx

x� z

f(z + i✏)� f(z � i✏) = �2⇡i for z<-1 or z>1

f(z) = � log(1 + z)� log(�1� z) everywhere else

and it is the same function 
as the one which had the 
[-1:1] cut outside the real 
axis

Note that z=±1 are singular (branch) points (end-point singularities)
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Example: pinch singularity

P = (
p
s,0)

k = (k0,k)

P � k

f(s) = i

Z
d4k

(2⇡)3
1

(k0)2 � k2 �m2 + i✏

1

(
p
s� k0)2 � k2 �m2 + i✏

�
p

k2 +m2 + i✏

k0 plane p
k2 +m2 � i✏

p
s�

p
k2 +m2 + i✏

p
s+

p
k2 +m2 � i✏

path of integration over k0p
s ! 2

p
k2 +m2

as ε➞0 these two poles “pinch” the contour i.e. it 
cannot be deformed without crossing one of them

the happens for any k, so we expect f(s) to be singular for all s>4m2

f(s+ i✏)� f(s� i✏) /
r

1� 4m2

s
✓(s� 4m2)
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Hunting for a resonance Imfl(s) = ⇢(s)fl(s)f
⇤
l (s)

f(s) is a real-analytic function : f(s*) = f*(s) 
fl(s+ i✏)� fl(s� i✏) = 2i⇢(s)fl(s+ i✏)fl(s� i✏)

fl(s+ i✏) =
fl(s� i✏)

1� 2i⇢(s)fl(s� i✏)

1st sheet s1 = 3 + 0.01 i  : f(s1) 
1st sheet s2 = 3 -  0.01 i : f(s2) f(s1) - f(s2) = “large” 

use (*) to define analytical continuation of f to the second sheet 

(*)

1st sheet s1 = 3 + 0.01 i  : f(s1) 

f2nd(s) =
fl(s)

1� 2i⇢(s)fl(s)

2st sheet s2 = 3 -  0.01 i : f2nd(s2)
f(s1)� f2nd(s2) = O(0.01)

f(s) has not singularities but f2nd(s) may have when 
fl(s) =

1

2i⇢(s)
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Enjoy the rest of the School 
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