
Plan for the Statistics Lectures

I Lecture I (Wednesday, September 18, 11:45-12:30)

1. Important probability concepts
2. Point estimation

I Lecture II (Thursday, September 19, 10:45-12:30)

1. Frequency and Bayes interpretations
2. Interval estimation
3. Systematic uncertainties

I Lecture III (Friday, September 20, 10:45-12:30)

1. Hypothesis tests
2. Resampling methods

I Lecture IV (Saturday, September 21, 10:45-12:30)

1. Density estimation
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Hypothesis tests

1. Basics (test vs p-value)

2. Nuisance parameters

3. Tests converging to χ2

4. Other tests

5. Issues in significance
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Hypothesis test basics

Consider a test, T , for hypotheses
H0 : Statement A

H1 : Statement B

I Assumes that exactly one of A or B must be true.
I H0 is called the null hypothesis; H1 is the alternative
I Test T ∈ {0, 1} defines a statistic (RV) such that we accept

H0 if T = 0 and accept H1 (reject H0) if T = 1
I The critical region, R of a test is the set of observations for

which T = 1
I The significance level is the probability to reject H0, if H0 is

true. This is the probability of a Type I error:

α ≡ P(X ∈ R|H0)

I The power of a test is the probability to reject H0 if H1 is true
Power is one minus the probability of a Type II error.

β ≡ P(X ∈ R̄|H1)

The power depends on the alternative distribution
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Example: Likelihood Ratio Test

I We have already made use of the likelihood ratio (LR) test in
our discussion on CIs.

I Let us show that this test is Uniformly Most Porwerful (UMP)
for a simple test

I A simple test tests simple hypotheses, that is H0 and H1 are
completely specified

I For example, we wish to test

H0 : θ = θ0

H1 : θ = θ1

θ could be a parameter vector, but θ0 and θ1 give it completely
I A hypothesis that is not simple is composite (e.g., θ > 0)

I We wish to construct a test of H0 against H1 that is most
powerful against any alternative θ1 (uniformly most powerful)
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Example: Likelihood Ratio Test

I Of the many possible critical regions, we wish to construct the
one for which the power is greatest. We wish to maximize:

1− β =

∫
R

f (x ; θ1)dx

=

∫
R

f (x ; θ1)

f (x ; θ0)
f (x ; θ0)dx

subject to constraint:

α =

∫
R

f (x ; θ0)dx

I Notice that:
1− β
α

= E

[
f (x ; θ1)

f (x ; θ0)

]
(R;H0)

where the expectation value is restricted to the critical region,
under H0
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Example: Likelihood Ratio Test

I Thus, build our critical region by selecting those values of X
for which f (x ; θ1)/f (x ; θ0) is largest, ≥ Λα

I Express in likelihood functions. Form likelihood ratio:

λ =
L(θ1; x)

L(θ0; x)

I If λ ≥ Λα, then x is in the critical region

I Thus, by construction LR test is UMP

I Note that the likelihood ratio λ = λ(X ) is an RV

I Can turn around and ask, given sampling x , what the
probability is that λ < λ(x). This is called a p-value
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p-values

I Have seen notion of a hypothesis test as testing a null
hypothesis against an alternative hypothesis

I Physicists make use of this paradigm, as well as another:
I Given an observartion, the p-value is defined as the probability

that the null hypothesis will produce a result as “extreme”, or
more, as the observed result

I The p-value only refers to the null hypothesis – there is no
explicit alternative

I Users of p-values call the p-value the significance level

I This is as if α had been set equal to p and a critical region
defined by p
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p-values and hypothesis tests – Historical note

I Practice of statistics is tied up with philosophical issues

I These extend beyond the Bayes versus frequency debate

I Subject of hypothesis tests is also fertile ground, dating at
least to a debate between Fisher and Neyman

I Fisher: p-values, notion of testing a given theory (H0). We
say goodness-of-fit (GOF)

I Neyman-Pearson: H0 vs H1, notion of testing between two
theories

I Physicists do both

I p-value is a RV; critical region R is not (only decision T is)

I Even GOF has an implied alternative (ie, “anything else”)

I Neyman-Pearson, Fisher both non-Bayesian; goal was to
eliminate dependence on priors
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Goodness of fit
I The goodness of fit (GOF) problem refers to whether a

dataset is consistent with sampling from a model for the
distribution. If data set X = (X1, . . . ,XN), is sampled iid from
some cdf FX (x) and the model is denoted M, this is a
hypothesis test of the form:

H0 :F = M

H1 :F 6= M

I This test is called a one-sample test. It is “one-sample”
because we are comparing a dataset with a given (theoretical)
distribution

I The two-sample test is also commonly encountered. In this
case, we compare two datasets, X and Y , sampled iid from
cdf’s FX and GY , to see whether they are consistent with
being drawn from the same distribution:

H0 :FX = GY

H1 :FX 6= GY
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Goodness of fit

I Goodness of fit tests may also be categorized as tests on
binned data (e.g., histograms) or unbinned data

I Statisticians call histograms tables. A simple histogram is a
table with one row

I A scatterplot may be binned into a table with multiple rows

I Categorizing a problem as binned or unbinned is somewhat
artificial – a test designed to be used on unbinned data may
usually be adapted to binned data (though the reverse may
not be possible)

I A large number of goodness of fit tests exist. There is no
“one size fits all” test. The choice of a good test depends on
the details

I “Goodness” of a test is measured in terms of its power for a
specified significance level

I An alternative must be assumed in order to compute the
power of a test
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Goodness of fit – caution

I Commonly (but not always), only the asymptotic distribution
(under H0) of the test statistic is known

I This does not mean that the test cannot be used when the
asymptotic condition is not met

I With sufficient computing capability, the distribution of the
test statistic may be determined via simulations.

I Must be done with some care, as H0 is often not completely
known.

I For example, might wish to test null hypothesis that two
histograms are sampled from the same distribution.

I The distribution itself may not be known. Instead, it must be
estimated somehow from the available data.

I If suitable care is not taken, the estimate may not be robust
against fluctuations, and badly erroneous results obtained.

I When this may be the case, suitable studies (e.g., with
different estimates of H0) should be undertaken to determine
this sensitivity.
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Binned goodness of fit tests

I Commonly used goodness of fit test is the chi-square test
I Motivation in the LS fitting process: We have a set of

measurements, sampled from a multivariate normal,
x1, . . . , xD , and a model to predict the means, µ1, . . . , µD .
The model may depend on zero or more unknown parameters,
θ1, . . . , θR . Sampling distribution is:

fX (x) =
1√

(2π)n|Σ|
exp

{
−1

2
[x − µ(θ)]T Σ−1 [x − µ(θ)]

}
=

1√
(2π)n det Σ

exp

(
−1

2
χ2

)
I The LS fitting procedure is to find those values of θ such that

the χ2 is minimized. If no additional conditions are applied,
the value of the minimum χ2, χ2

min, is drawn from a
chi-square distribution with D − R DOF. Comparing the
observed χ2

min with the chi-square distribution provides the
chi-square goodness of fit test.
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Binned goodness of fit tests – Pearson χ2

I Consider fitting a model to a histogram

I N is the number of histogram bins and xn is the content of
bin n

I If the bin contents are counts from a Poisson process, then
the bins are independent and the covariance matrix is
cov(X ) = diag(µ1, . . . , µN)

I A GOF test statistic known as the Pearson chi-square is
defined by:

χ2
P =

N∑
n=1

(xn − µn)2

µn
,

I This is asymptotically χ2(N) distributed (or χ2(N − 1) if the
normalization is fixed to the observed total counts). Usually
we have R parameters to estimate and replace µ with
µ̂i = µi (θ̂) where θ̂ is determined by minimizing χ2

P . This
reduces the degrees of freedom, by one for each estimated
parameter, subject to regularity conditions discussed below
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*Binned goodness of fit tests – Pearson χ2

I The Pearson chi-square test should not be used if any of the
histogram bins have small statistics, since the χ2(N − R)
distribution will not apply

I Various rules-of-thumb for how many counts are needed in
each bin for a good-enough approximation, usually around
5-10

I May combine bins to meet the minimum requirement, though
at the loss of sensitivity to possible structure in the data

I Another approach is to use bins that have equal probability
content under H0, ensuring a uniform weighting of the
intervals
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*Binned goodness of fit tests – Neyman modified χ2

I Especially at low statistics there is a tendency for χ2
P

minimization to overestimate µn.

I May be avoided by instead estimating the parameters via
maximum likelihood (using Poisson statistics)

I An alternative approach defines a statistic (Neyman modified
chi-square):

χ2
N =

N∑
n=1

(xn − µn)2

xn

I For large statistics, this also works, but for low statistics it
suffers a similar disease: fluctuations toward small values of xn
will be more highly weighted, tending to bias towards small
values of µn.
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Statistics converging to chi-square
Binning not required

I Three important test statistics that follow a χ2 distribution
for large samples, under certain assumptions:

I Likelihood ratio test
I The Wald test
I The score test
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Statistics converging to chi-square – Likelihood ratio

I Already discussed this test for simple test and CIs

I For composite hypotheses we maximize the likelihoods under
H0 and H1 before taking the ratio

I Taking twice the the logarithm, we have the statistic

2 log λ = 2 log max
H1

L(H1; X )− 2 log max
H0

L(H0; X ).

I We suppose H0 defines a region of dimension V < R in a
parameter space for θ, and H1 to the entire remaining
R-dimensional space

I Then, under H0, 2 log λ is asymptotically χ2(R − V )
distributed, under some regularity conditions (later)
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*Statistics converging to chi-square – Wald statistic

I Following above scenario, we may write
H0 : θ = q(ϑ),

where ϑ is a parameter vector of dimension V < R, and q
provides the mapping onto the R-dimensional θ. May rewrite
H0 as the R − V equations giving the kernel of the mapping,
that is as Q(θ) = 0. Eg, if H0 : θ = θ0, then Q(θ) = θ − θ0.
Let the MLE under H0 be ϑ̂, and the MLE under H1 be θ̂

I The Wald statistic is:

W ≡
[
Q(θ̂)

]T

θ=θ̂

{[
∂Q

∂θ

]T

θ=θ̂

I (θ̂)−1

[
∂Q

∂θ

]
θ=θ̂

}−1

Q(θ̂),

where I (θ̂) is the Fisher information matrix, estimated at
θ = θ̂:

Iij(θ = θ̂) = E

[
∂2 log L(θ; X )

∂θi∂θj

]
θ=θ̂

.
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*Statistics converging to chi-square – Wald statistic

I For a normal distribution I (θ) is the inverse of the covariance
matrix, and is independent of θ if the parameters are functions
of location only

I Eg, suppose the null hypothesis is H0 : θ = θ0. Then V = 0
and Q(θ) = θ − θ0, and we have the familiar-looking statistic:

W = (θ̂ − θ0)TI (θ̂)(θ̂ − θ0)

I The likelihood ratio compares two likelihood values; the Wald
statistic compares two values of θ

I Notice that the Wald statistic does not require evaluation of ϑ̂
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*Statistics converging to chi-square – Score statistic

I Alternatively, a score statistic based on the score may be
computed, measuring the gradient of the likelihood under H0

I In this case it is not necessary to obtain the MLEs for θ.
Instead, we compute:

U = S(θ0)TI−1(θ0)S(θ0),

where S is the score function evaluated at θ0 (H0)

I Comparing with the Wald statistic, we see that the evaluation
is made at H0 rather than at the peak of the likelihood, and
the deviation measure is replaced by a slope
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*Statistics converging to chi-square – Comments

I Which of these approaches is best?

I Asymptotically, they are equivalent!

I More generally, there is no universal answer

I One ingredient in deciding may be the different computational
requirements

I (Much) more can be said, eg. Rayner and Best, Smooth tests
of Goodness of Fit, Oxford Univ. Press (1989); Cressie and
Read, J. R. Stat. Soc. B 46 (1984) 440; as well as
NarskyPorter(2014), Wiley
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Goodness of fit – Counting DOF

I Common confusion: How many DOF do I use?

I Requires care. There are conditions for the validity of the
χ2(N − R) or χ2(R − V ) distribution of the test statistic

I Often arises when using χ2 to evaluate the statistical
significance of a possible signal

I For example: We do two fits to the same dataset (say a
histogram with N bins):

I Fit A has RA parameters, with χ2
A

I Fit B has a subset RB of the parameters in fit A, with χ2
B ,

where the RA − RB other parameters (call them θ) are fixed at
zero

I What is the distribution of ∆χ2 = χ2
B − χ2

A?
I More carefully, what is the distribution under H0,

corresponding to fit B?
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Counting DOF

I In the asymptotic limit (that is, as long as the normal
sampling distribution is a valid approximation),

∆χ2 ≡ χ2
B − χ2

A

is the same as a likelihood ratio (2 log λ) statistic for test:

H0 : θ = 0 against H1 : some θ 6= 0

In this case, the ∆χ2 is distributed according to a
χ2(RA − RB) distribution under the conditions:

1. Parameter estimates in computing λ are consistent under H0

2. Parameter values under H0 are not boundary points of H0 ∪H1

(the maintained hypothesis). For example, if there is a single
parameter θ, with H0 : θ = 0 and H1 : θ > 0, then the
maintained hypothesis is θ ≥ 0 and the parameter value in H0

is a boundary point
3. There are no nuisance parameters under the alternative

hypothesis other than those present in H0

Unfortunately, commonly encountered situations violate these
requirements
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Counting DOF - Example I

I Consider fitting a spectrum to decide whether a bump is
significant

I The parameter of greatest interest is the signal strength

I Compare fits (i.e., χ2 values) with and without a signal
component to estimate significance of the signal

I Under H0, the signal is zero. Under H1, the signal is non-zero

I If the signal fit has, e.g., a parameter for location, this
constitutes an additional nuisance parameter under H1, that is
a nuisance parameter that is not defined under H0

I If the fit for signal constrains the signal yield to be
non-negative, this violates the interior point requirement

Let us illustrate this by example
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Counting DOF - Example I

Sample ML fits:

I Left: Distribution generated
and fit under
background-only H0

I Right: Distribution
generated under H1
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NarskyPorter(2014), Wiley

(R function optim used for fits)

I In order to compute the distribution of 2 lnλ ∼ ∆χ2, we
consider the spectrum generated under H0, the background
only hypothesis

I The difference in χ2 bewteen the H0 and H1 fits is calculated
for this spectrum

I The distribution of the ∆χ2 statistic is estimated by
simulating each “experiment” many times, under H0
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Counting DOF - Example I results
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I When the location parameter is fixed in the fit, and the signal
yield is allowed to be positive or negative, the distribution
follows a χ2(1)

I When we constrain the yield to be non-negative, the
distribution becomes more peaked towards zero than χ2(1)

I When both signal yield and location are unconstrained,
distribution is somewhere between the curves for 1 and 2
DOF. This is because the location parameter is an additional
nuisance parameter under H1
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*Counting DOF – Comment

I A similar issue arises when the unknown parameters of a
distribution are determined according to a ML fit to the
unbinned observations

I If the data is then binned and a χ2 statistic computed, this
statistic is not in general χ2(N − R − 1) (assuming
normalization taken from the data) distributed

I This is because the unbinned fit produces more efficient
estimators than a binned fit in general

I Under regularity conditions, the asymptotic distribution lies
between χ2(N − 1) and χ2(N − R − 1). If the χ2(N − R − 1)
distribution is assumed, the result will be to reject the null
hypothesis too often

I Depending on the distribution, the error made may be minor
or substantial, so this should be considered when taking this
approach
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Counting DOF - Example II

I We have a histogram of an observed mass distribution
I We are interested in the possibility that there is a resonance

at x = m −mR = 0 on a flat background
I Including possibility of interference, model the pdf for the

mass distribution by:

f (x ; a, θ) = B|1 + ae iθ/(x + i)|2,

where B is a normalization constant, and a and θ are
resonance parameters. Assume that the mass and width of
the resonance are known, and the mass resolution is negligible

I Want to test:
H0 : a = 0

H1 : a > 0

I To do this, perform two fits to the histogram, one with a = 0,
and one with a and θ allowed to float. We compute the
change in log likelihood, ∆ = ∆ ln L, between the two fits.
Assume large bin contents
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Counting DOF - Example II

I Considering the χ2 distribution, in order to compute a p-value
for your test, how many degrees of freedom should we use for
statistic 2∆?

I There are two parameters under H1 (a and θ) specified or not
present under H0. Suggests 2 DOF

I But θ looks like a nuisance parameter not present under H0

I And a = 0 doesn’t look like an interior value if amplitude ≥ 0
I So try simulation to check:

I Generate a large number of MC
datasets under H0, and repeat analysis
on each of them.

I Compute 2∆ for each experiment and
make a histogram of 2∆.

I For concreteness, assume
x ∈ (−10, 10), and an experiment has
50,000 events on the average.
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All is well: Test is for
origin, an interior point of
complex plane
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Univariate unbinned goodness of fit tests

I If we have an iid sample of size N, x1, x2, . . . xN , we have a
univariate unbinned dataset, where we assume a continuous
sampling distribution. This dataset may be used to test
hypotheses concerning the sampling distribution

I We list a few (additional) univariate test statistics that could
be considered

I Kolmogorov-Smirnov
I Cramér–von Mises
I Anderson-Darling
I Watson (supplemental material)
I Neyman smooth (supplemental material)
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Kolmogorov-Smirnov test

I Besides the χ2 and LR tests, the Kolmogorov-Smirnov (KS) is
familiar among physicists

I This tests for difference between two cumulative distributions

I Given any pair of cdf’s, F and G on a sample space, it may be
possible to define a distance or metric, ρ(F ,G ), that returns a
non-negative number satisfying all the normal properties of a
distance on a metric space

I In particular we may define the distance

ρ(F ,G ) ≡ sup
x
|F (x)− G (x)|

When G = FN is the empirical cdf of our dataset, and F is
the H0 cdf, ρ = KN(F ) provides the Kolmogorov-Smirnov
GOF statistic
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Kolmogorov-Smirnov test

I The distribution of KN(F ) is independent of F (exercise), for
continuous F

I Thus, the distribution of the Kolmogorov-Smirnov statistic
has the convenient property that it is known and depends only
on the sample size N
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Cumulative distribution for the Kolmogorov-Smirnov statistic.
From left to right, N = 100, 10, 5
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*Cramér–von Mises test

I An obvious variation on the Kolmogorov-Smirnov approach is
to replace the supremum distance function with another
common measure of distance, the average squared deviation:

C 2
N(F ) =

∫ ∞
−∞

[FN(y)− F (y)]2 dF (y).

This is known as the Cramér–von Mises test. The distribution
of C 2

N(F ) likewise does not depend on F
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*Anderson-Darling test

I There are many test statistics one could invent based on the
difference between cumulative distributions

I The KS test just described has the property that it tends to
emphasize the region of most rapid change in the cdf (that is,
the region of the peak of the pdf), as that is where the
maximum difference under H0 is likely to occur

I The Anderson-Darling test (AD) gives more weight to the
tails of the distribution. For example, sampling is often
approximately normal in the central region, but the tails may
be significantly non-Gaussian. The Anderson-Darling test is
powerful in detecting such cases

I The AD statistic is defined as:

A2
N(x) = N

∫ ∞
−∞

[FN(y)− F (y)]2

F (y) [1− F (y)]
dF (y),

where FN is the empirical cdf of our dataset x = x1, . . . , xN
and F is the cdf under H0
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Multivariate tests

I We have listed a number of univariate test statistics

I But maybe the xn are multidimensional, say with dimension D

I Could also construct a D-dimensional generalization of the
histogram, and apply the χ2 test

I As long as the sample is large enough, we’ll have an
approximate χ2 distribution

I If the appropriate in each dimension is 100 intervals, then we
have a total of 100D bins. It doesn’t take many dimensions to
get sparse bin populations, even with large datasets

I May mitigate with an adaptive binning procedure

I However, the power of the test suffers if there is important
information in the distribution within a bin
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Multivariate tests

I A variety of unbinned methods for dealing with the
multivariate GOF problem have been proposed, eg,

I Energy tests
I Transformation to uniform distribution
I Local density tests
I Nearest neighbor methods
I Kernel-based tests
I Mixed sample tests
I Using a classifier

I Williams, arXiv:1006.3019v2 (2010) studies several methods
using the example of a high energy physics Dalitz plot analysis

I We defer discussion of these to the supplemental material
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Significance

I When asking for the “significance” of an observation (of,
perhaps a new effect), you ask for a test of the hypotheses:

H0 : There is no new effect

H1 : There is a new effect

I Not really different from GOF and CIs

I Significance is quoted as the p-value for H0

I A 68% confidence interval does not always tell you much
about significance

I The tails may be non-normal
I A separate analysis is generally required, which models the

tails appropriately.
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Aside: Significance as “nσ”

HEP parlance is to say an effect has, e.g., “5σ” significance.
At face value, this means the observation is “5 standard
deviations” away from the mean (under H0):

σ ≡ E
[
(x − x̄)2

]
.

But we often don’t really mean this. Note that a 5σ effect of this
sort may not be improbable:

x

P(x)

0.1

0.8

0 1-1

0.1

P(|x − x̄ | = 5σ) = 20% !
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Aside: Significance as “nσ” (continued)

I Instead, we often mean that the probability (p-value) for the
effect is given by the probability of a fluctuation in a normal
distribution 5σ from the mean, i.e.,

P = P(|x | > 5), for x ∼ N(0, 1)

= 5.7× 10−7 (two-tailed probability)

I Sometimes we really do mean 5σ, usually presuming that the
sampling distribution is approximately normal. [May not be an
accurate presumption when out in the tails!]

I Also popular to call
√
−2∆ lnL the “n” in “nσ”.

From: L0(θ = 0; x) = 1√
2πσ

exp
[
−1

2 (x/σ)2
]
,

Lmax(θ̂ = x ; x) = 1√
2πσ

, giving
√
−2∆ lnL =

√
∆χ2 = x/σ = n

I Desirable to be more concise by quoting probabilities, or
p-values as is common in the statistics world. At least say
what you mean!

September 20, 2013 Frank Porter, Flecken-Zechlin School . . . Modern Amplitude Analysis Techniques 39



Estimating significance: Pitfalls

What are the dangers? In a nutshell:
Unknown or unknowable sampling distributions

Ways to not know the distribution:

I The Improbable Tails

I Systematic Unknowns

I The Stopping Problem Example

I The exploratory Bump Hunt
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The Stopping Problem

There is a strong tendency to work on an analysis until we are
convinced that we got it “right”, then we stop
Simple example: “Keep sampling” until we are satisfied
Motivate our example:

I Ample historical evidence that experimental measurements are
sometimes biased by some preconception of what the answer
“should be”. For example, a preconception could be based on
the result of another experiment, or on some theoretical
prejudice

I A model for such a biased experiment is that the experimenter
works “hard” until s/he gets the expected result, and then
quits. Let’s Consider a simple example of a distribution which
could result from such a scenario [NIM A 368 (1996) 793]
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Stopping Problem: Normal likelihood function
example

Consider an experiment in which a
measurement of a parameter θ corresponds to
sampling from a Gaussian distribution of
standard deviation one:

N(x ; θ, 1)dx =
1√
2π

e−(x−θ)2/2dx

x

Fr
eq

ue
nc

y

θ− 2 θ θ + 2

I Suppose the experimenter has a prejudice that θ is greater
than one

I Subconsciously, s/he makes measurements until the sample
mean, m = 1

N

∑N
n=1 xn, is greater than one, or until s/he

becomes convinced (or tired) after a maximum of N
measurements

I The experimenter then uses m to estimate θ
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Stopping Problem: Normal likelihood function
example

For illustration, assume that N = 2. In terms of the random
variables m and n, the pdf is:

f (m, n; θ) =


1√
2π

e−
1
2

(m−θ)2
, n = 1, m > 1

0, n = 1, m < 1
1
π e−(m−θ)2 ∫ 1

−∞ e−(x−m)2
dx n = 2

Histogram of sampling
distribution for m, with pdf given
by above equation, for θ = 0

N
um

be
r 

of
 e

xp
er

im
en

ts

Sample mean

-4 -2 0 2 4
   0

1000

2000

3000

4000

The likelihood function, as a function of θ, has the shape of a
normal distribution, given any experimental result. The peak is at
θ = m, so m is the MLE for θ
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Stopping Problem: Normal likelihood function
example

In spite of the normal form of the likelihood function, the sample
mean is not sampled from a normal distribution. The “4σ” tail is
more probable (for some θ) than the experimenter thinks.
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*Stopping Problem: Normal likelihood function
example

I The likelihood function, as a function of θ, is a Gaussian,
given any experimental result.

I In spite of the normal form of the likelihood function, the
sample mean is not sampled from a normal distribution.

I The interval defined by where the likelihood function falls by
e−1/2 does not correspond to a 68% CI
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Next: Resampling methods
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Resampling methods

I Permutation sampling

I Bootstrap

I Jackknife

I Cross-validation
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Resampling – Introduction

I With modern computing resources, new methods of statistical
analysis are practical

I Consider here approach to estimation afforded by resampling

I Avoid deriving formulas for the properties (eg, variance) of a
statistic (eg, a point estimator). Avoid imposing potentially
invalid assumptions (a model) about the distribution

I Instead, use the data in hand to produce a statistical ensemble

I Often, MC modeling is used to answer questions about the
distribution of a statistic. Resampling offers an alternative
approach that avoids assumptions in the MC model

I Resampling methods have become popular, and may be used
to address different problems
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Resampling – Introduction

I Resampling methods overlap considerably in application.
Broadly, the permutation methods are generally used for
hypothesis testing, the bootstrap and jackknife are used to
estimate bias, variance and confidence intervals, while
cross-validation is used to estimate the accuracy of a
predictive model

I Theoretical basis for these methods is in asymptotic properties
such as consistency and convergence. A thorough discussion is
well outside our scope, and indeed this remains an active area
of research. While the basic ideas are rather simple and
elegant, care should be exercised in the execution. References
for further study are noted
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Permutation sampling

I Consider two datasets, A and B, of sample sizes NA and NB

I Wish to test whether the two populations are consistent with
arising from the same underlying distribution by comparing
some statistic computed on each dataset

I Call this statistic SA or SB ; eg, it could be the sample mean,
or the median, or the variance, etc.

I Under H0 that the sampling distribution for A and B is the
same, must have E (SA) = E (SB). Thus the difference
∆S = SB − SA is a measure of the difference between the
distributions

I In order to apply a test based on the observed ∆S , we need to
know its distribution under H0

I The method of permutation resampling permits us to estimate
this distribution without any assumptions (e.g., normality) of
the sampling distribution
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Permutation sampling

I Under H0, all samples in A and B are equivalent, and
therefore, any permutation of the labeling A and B has equal
probability

I Thus, the distribution of ∆S is determined by considering all
possible permutations of the A and B labels, grouping the
NA + NB samplings into sets of size NA and NB and
computing ∆S for each permutation

I The set of values of ∆S from all permutations provides the
estimated distribution of ∆S

I The actual ∆S may be compared with this distribution to
obtain a p-value for H0

I With additional effort, the test may be inverted to derive
confidence intervals
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Permutation sampling

I Permutations within a given A and B repartition are
unnecessary. Even so, the computing required to evaluate all

remaining

(
NA + NB

NA

)
permutations may be prohibitive

I For larger samples, we may randomly sample permutations
without being exhaustive (providing a MC permutation test).
This is called a conditional MC because it is a Monte Carlo
simulation conditioned on the empirical data set
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Permutation sampling

I For an example, we apply a MC
permutation test to the distribution
shown

I A sample of size NA = 1000 is
compared with a sample of size
NB = 20. We ask whether the
mean of sample A is greater than
the mean of sample B
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NarskyPorter(2014), Wiley

I If the sampling were from a normal distribution, the statistic

t = (x̄A − x̄B)/

√
(NA − 1)s2

A + (Nb − 1)s2
B

NA + NB − 2

NA + NB

NANB

is distributed as the Student t-distribution with NA + NB − 2
degrees of freedom and may be used to test the desired
hypothesis. Here, x̄ refers to the sample mean, and s refers to
the sample variance (computed with N − 1)
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Permutation sampling

I However, for non-normal distributions the t-distribution may
not apply

I In the case of the example, a test at nominal 1% significance
rejects the (true) H0 with only 0.57% probability

I The permutation test rejects H0 at closer to the desired 1%
probability (1.07% in a simulation using 10,000 permutations)

I We see that large errors may result from erroneous model
assumptions, and the permutation test avoids making such
assumptions

I The permutation test is a type of non-parametric test. It is
thus more robust than parametric tests which depend on the
validity of the sampling model

I Such an advantage may come at the price of power. If a
reliable model is available, more powerful tests can generally
be constructed
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Bootstrap

A popular resampling technique is the bootstrap [Efron, Ann.Stat.
7 (1979) 1], motivated as a means to estimate the variance of an
estimator for a population parameter. Can be especially useful
when the sampling distribution is unknown, but is not limited to
this situation. The basic bootstrap algorithm is as follows:

I Suppose we wish to estimate parameter(s) θ with an iid
sample of size N, X1, . . . ,XN . Each of the Xn may be a vector
of RVs. Eg, Xn could be an event in a particle physics dataset.

I Denote the estimator (eg, MLE) for θ by θ̂(X )

I Now form a set of B bootstrap replicas by randomly sampling
sets of size N from X , with replacement. For example, in R:
for (b in 1:B) xr[b] = sample(x,replace=TRUE)

I For replication b, form replicated estimator θ̂(b), where the
argument is now the replication index. This procedure may be
called the MC bootstrap, because of the MC approach to
choosing replications
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Bootstrap

I These replications can be used to estimate the variance of the
estimator. Simply take the sample mean and variance of the
bootstrap estimators:

θ̄ =
1

B

B∑
i=1

θ̂(i),

s2
θ =

1

B − 1

B∑
i=1

(θ̂(i)− θ̄)2

I Then sθ is the estimated standard deviation of the estimator θ̂

I If we have multiple parameters, the covariances may also be
estimated with the bootstrap:

cov(θ̂m, θ̂n) =
1

B − 1

B∑
i=1

[
θ̂m(i)− θ̄m(i)

] [
θ̂n(i)− θ̄n(i)

]
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Bootstrap

I The bootstrap provides a way to approximately sample from
the acutal parent distribution for X . Instead of repeatedly
sampling from the actual distribution, which is likely to be
impractical, we sample from the empirical distribution

I Example: Consider the estimation of the median parameter of
a BW distribution

I We use the sample median as our estimator
I We will use the boostrap to estimate the variance of the

sample median
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Bootstrap

I Bootstrap estimate for the cdf of
the median estimator, for two
different samplings of size 1001
from a BW

I Curve shows the actual cdf

I Shapes of the distributions are
similar, illustrating applicability of
the bootstrap for estimating
variance

I Translations of the bootstrap cdf’s
are expected from fluctuations in
the median estimation, but do not
affect the estimation of variance

I The variance estimates will also
fluctuate around the true variance

NarskyPorter(2014), Wiley
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Bootstrap

I The convergence of the bootstrap estimator for variance may
be examined by plotting the estimator against the number of
bootstrap samples

Convergence of bootstrap
estimator for the variance of the
median of a Cauchy distribution,
as a function of number of
bootstrap samples. The dashed
line shows the actual variance
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NarskyPorter(2014), Wiley
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Bootstrap

I Bootstrap samples are based on the empirical distribution,
hence will reflect any fluctuations that may be present

I Figure below shows the distribution of the bootstrap estimator
for the standard deviation of the median, for our BW example

I The actual value of the standard deviation is 0.050
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Bootstrap

I In this example, the sampling distribution is known, and the
variance of the median can be precisely calculated

I This should of course be done when possible

I However, when the sampling distribution is not known the
bootstrap provides a straightforward method for estimating
the variance
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Bootstrap – Estimation of bias

I The bootstrap may also be used to estimate the bias of a
parameter estimator

I Suppose θ = θ(F ) is a parameter (e.g., the variance) of
distribution F

I Estimator θ̂ = θ̂(x) is a statistic computed from a dataset of
iid x1, . . . , xN

I Denote the bias of θ̂ by:

bF (θ) = EF

[
θ̂(x)

]
− θ(F ),

where the subscript F denotes expectation value with respect
to distribution F

I If we don’t know what F is, even up to unknown θ, then we
cannot evaluate the bias

I Let’s see what the bootstrap can do. . .
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Bootstrap – Estimation of bias

I Our data provides an approximation to F , the empirical
distribution F̂ ; use this to get a bootstrap estimate of bias:

bF̂ = EF̂

[
θ̂(x∗)

]
− θ(F̂ )

x∗ is a bootstrap sample drawn from empirical distribution F̂

I Since the empirical distribution F̂ is used, the bias estimate
depends only on that, and not on θ itself

I Eg, if we estimate the variance (θ) of F with
θ̂ = 1

N

∑N
n=1(xn − x̄)2, where x̄ is the sample mean, we find

(exercise) a bootstrap bias estimate of − 1
N θ̂, which

approximates the known bias of −θ/N for this estimator
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Bootstrap – Estimation of bias

I In general, cannot evaluate the above expectation analytically,
and must resort to MC bootstrap sampling

I Thus, we obtain a sequence of boostrap estimators
θ̂∗(1), . . . , θ̂∗(B), where B is the number of bootstrap
replications

I Approximate the desired expectation with the average of
these,

θ̂∗(·) ≡ 1

B

B∑
i=1

θ̂∗(i)

I Obtaining bias estimate

b̂F̂ ;B = θ̂∗(·)− θ(F̂ )
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Bootstrap confidence intervals

I The bootstrap may be used to estimate confidence intervals

I Useful when the sampling distribution is not known, and our
familiar methods don’t apply

I Wish to find a confidence interval for a population parameter,
θ, where we have a statistic θ̂ = θ̂(X ) to estimate θ

I Bootstrap sampling from X corresponds to obtaining an iid
sample X ∗ of size N from the empirical distribution F̂ , our
surrogate for the actual distribution. Given a set of B such
bootstrap replicas, we compute the corresponding estimators
θ̂∗(1), . . . , θ̂∗(B)

I Let PB(u) be the emprical cdf for this set of θ̂∗s. This is a
monotonic step function

I To obtain an estimated upper confidence bound at the 1− α
confidence level, we solve for ûα in

ûα = P−1
B (α)
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Bootstrap confidence intervals

I Because of the discontinuities, this may be only approximately
soluble, so let us be more explicit

I Begin by ordering all of the θ̂∗’s
I Then count up until reaching a fraction of at least 1− α of

them
I The smallest such θ̂∗ value is ûα

I That is, the bootstrap percentile method corresponds to
finding the appropriate percentile of PB

I This method can readily be adapted to estimating two-sided
confidence intervals
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Bootstrap confidence intervals – example

I For example, we estimate the population mean θ and estimate
a 68% CI

I Our example uses a dataset of size N = 100 from a N(0, 1)
distribution. The estimator is the sample mean,
θ̂ = 1

N

∑N
i=1 xi . If we knew that we were sampling from a

Gaussian, we would typically quote the interval
(θ̂ − 0.1, θ̂ + 0.1)

I However, supposing that we don’t know anything about the
sampling distribution, we use the bootstrap. In MATLAB:
ci = bootci(nbootstrap,{@mean,x},’alpha’,alpha,’type’,’per’);
Here, @mean is a function that computes the sample mean,
alpha ≈ 0.32, and per specifies that we use the percentile
method described above

I We perform the calculation with nbootstrap = 300
bootstrap samples (sufficient for illustration, a bit small in
practice)
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Bootstrap confidence intervals – example

I The method is found to cover with a probability of ∼67.8%,
in good agreement with the desired 68.3%

I Histogram of the size of the
CI, for 10000 experiments

I Compare with the fixed size
of 0.2 in the usual approach
when the distribution is
known to be Gaussian
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I Find that the bootstrap may be used to estimate confidence
intervals with accurate coverage

I The cost of not knowing the sampling distribution shows up
as variation of the interval size

I Refinements exist, eg, BCa CI (see, eg, NarskyPorter(2014), Wiley)
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Bootstrap – Use in particle physics

I The largest use of the bootstrap in particle physics has so far
been in classification

I However, it is beginning to be used in parametric error
analysis as well

I Estimation of uncertainty in changes in parameters when
including ρ(1700) contribution in a B → ρπ time-dependent
Dalitz plot analysis (arXiv:1304.3503v1)

I Evaluation of uncertainty in pdf from limited MC sample size
(arXiv:1303.0571v1)

I I expect that this usage will grow
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Jackknife
An algorithm known as the jackknife may also be used to estimate
both variance and bias of a parameter estimator

I Consider situation in which we use our sample x1, . . . , xN to
estimate the mean of the parent population. Naturally, we’ll
use the sample mean for our estimator:

θ̂(x) =
1

N

N∑
n=1

xn

I What is the variance, σ2
θ̂
, of our estimator? We may estimate

this using 1/N times the sample variance:

s2 =
1

N(N − 1)

N∑
n=1

(xn − θ̂)2

I Now let’s try something. Let
x−i = {x1, . . . , xi−1, xi+1, . . . , xN} be the dataset obtained by
removing xi from our original sample. The set x−i is called a
jackknife sample
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Jackknife

I The sample mean for set x−i is θ̂−i ≡
1

N − 1

∑
n 6=i

xn

I Then we may write
s2 =

N − 1

N

N∑
i=1

(θ̂ − θ̂−i )2

I Define θ̂′ as the sample mean over all the θ̂−i ’s:

θ̂′ ≡ 1

N

N∑
i=1

θ̂−i

I Use this to rewrite the estimated variance in the form:

s2 =
N − 1

N

N∑
i=1

(θ̂′ − θ̂−i )2 + (N − 1)(θ̂′ − θ̂)2

I First term is the variance with respect to the (jackknife)
sample mean, that is an estimate of the variance of θ̂ about
its mean with the (N − 1)/N scale factor. Second term
compares θ̂′ with θ̂, and is related to the bias
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Jackknife

I We can make this concrete as follows: Assume that our
estimator is consistent in the sense that E θ̂

N→∞−−−−→ θ. If this
limit is approached at leading order as 1/N, then
bN−1 ∝ N

N−1 bN , for large enough N, where bN denotes the
bias for a sample of size N:

bN(θ) ≡ E θ̂ − θ,

Hence, we can use our jackknife samples to estimate the bias
of θ̂, noting that:

E (θ̂′ − θ̂) = bN−1 − bN =
1

N − 1
bN
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Jackknife

I We summarize the jackknife method for estimating variance
and bias: The jackknife estimate for the variance of estimator
θ̂ with respect to its expectation value is

s ′2 =
N − 1

N

N∑
i=1

(θ̂′ − θ̂−i )2

The jackknife estimate for the bias of estimator θ̂ with respect
to θ is

b̂N = (N − 1)(θ̂′ − θ̂)

A bias correction may be applied to estimator θ̂ to obtain the
improved (bias-corrected jackknife estimate) estimate for θ:

θ̂∗ = N θ̂ − (N − 1)θ̂′
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Jackknife

I The algorithm readily generalizes beyond our construction.
Instead of the sample mean, we may substitute any statistic of
the form:

θ̂(x) = a +
N∑

n=1

b(xn)

I This is called a linear statistic – it is here simply a linear
function of a transformation from our original set of iid RVs
to another set of iid RVs

I Our above discussion goes through without difficulty for this
case

I For non-linear statistics, we may still apply the method, but
with due caution
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Jackknife

I Example with known properties: estimation of a population
variance, σ2. Consider estimate

σ̂2(X ) =
1

N

N∑
n=1

(xn − x̄)2,

where x̄ is the sample mean

I We then construct the jackknife samples according to our
prescription, and calculate the jackknife estimates of variance
and bias for σ̂2

I We carry out this exercise on a sample of size N = 100 drawn
from a uniform distribution on (0, 1)

I Our sample has an estimated variance of 0.0821, according to
the equation above
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Jackknife

I The jackknife estimates the bias of this
estimator as −0.000829, compared with
the known bias of −1/12N = −0.000833

I The jackknife estimate for the variance of
the estimator gives 0.00772

I Hence bias-corrected estimate of the
variance of the sampling distribution is
0.0821 + 0.000829 = 0.0829± 0.0077,
compared with the known variance
1/12 = 0.0833

NarskyPorter(2014), Wiley

Estimation of
variance using the
jackknife

In this case the bias correction is small compared with the
statistical uncertainty. In fact, this statistic is not linear, but our
specific example is “close” to linear, so it is not unexpected that
the method works
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Jackknife vs Bootstrap?

I Jackknife and bootstrap can both be used to estimate variance
and bias. It is thus natural to ask which is better. As “better”
is vague, the answer is “it depends”. Some considerations:

I The jackknife does better in the estimation of bias at least for
linear statistics, such as the mean. The sample mean is an
unbiased estimator for this parameter, and that is what the
jackknife tells us. Estimating this bias with a set of B
randomly drawn bootstrap samples will in general produce a
non-zero bias estimate due to the random fluctuations

I Jackknife requires examining N samples of size N − 1, while
the bootstrap requires examining some large number B of
bootstrap datasets each of size N. Unless N is large, the
computation required in the jackknife is more manageable

I The jackknife does not make use of all of the available
information in the case of nonlinear statistics – it represents a
linear approximation to the (exhaustive) bootstrap and may
be comparatively inefficient
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Jackknife vs Bootstrap?

I The jackknife runs into trouble with non-smooth statistics.
Smoothness captures a notion of continuity on a dataset –
small changes in the data are reflected as small changes in the
statistic

Eg, the median is a
non-smooth statistic:
Suppose we have a
dataset of size 3 with
x , a, b = x , 2, 3 0
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I Gives trouble in jackknife estimation. In a dataset of any size,
the leave-one-out jackknife samples will have at most three
different values for the medians. If we attempt to estimate the
variance of the median estimator using the jackknife, we
obtain unreliable (i.e., inconsistent) results. The bootstrap
does much better
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Jackknife vs Bootstrap? – Example

Estimation of standard
deviation for the median
of a N = 100 sample size
from a U(0, 100) sample.
Star is true value.
Note scale difference!
High estimates occur
when the two samplings
on either side of the
median are far apart
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NarskyPorter(2014), Wiley

I This problem can be mitigated, at the cost of additional
computing power (and perhaps bias and variance in more
typical situations), with the delete-d jackknife
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Cross-validation

Suppose in a regression analysis we want to know whether adding
another resonance, or another term in an angular distribution fits
the data significantly better

I If we can assume the sampling errors are Gaussian, we simply
compare the residual sum-of-squares (RSS) values in a
Fisher-Snedecor F -test

I Otherewise Cross-validation can be used

I Consider a bivariate dataset D ≡ {(Xn,Yn), n = 1, . . . ,N}
I Suppose we are interested in finding the best straight line fit.

In this case, our regression function is r(x) = ax + b. We
estimate parameters a and b by finding â and b̂ that minimize
(assuming equal weights for simplicity):

N∑
n=1

(Yn − âXn − b̂)2
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Cross-validation

I The value of a new sampling is predicted given XN+1:

ŶN+1 = âXN+1 + b̂

I We wish to estimate the expected prediction error (EPE) for
YN+1:

EPE(r) = E
{

[Y − r(X )]2
}

=

∫
[y − r(x)]2f (x , y) dxdy

The expectation is over both X and Y , it is the expected
error (squared) over the joint distribution

I We don’t know f (x , y) so we use the data to estimate it
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Cross-validation

I A simple approach is to divide our {(Xi ,Yi ), i = 1, . . . ,N}
dataset into two pieces, perhaps two halves

I One piece (the training set) could be used to determine the
regression function, and the other piece (the testing set) could
be used to estimate the EPE

I This seems a bit wasteful, since we are only using half of the
available data to obtain our regression function, and we could
do a better job with all of the data

I The next thing that occurs to us is to reverse the roles of the
two pieces and somehow average the results, and this is a
pretty good idea

I But let’s take this to an extreme, known as leave-one-out
cross-validation
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Leave-one-out cross-validation

The algorithm for leave-one-out cross-validation is as follows:

1. Form N subsets of the dataset D, each one leaving out a
different datum, say (Xk ,Yk). We’ll use subscript −k to
denote quantities obtained omitting datum (Xk ,Yk).
Likewise, we let D−k be the dataset leaving out (Xk ,Yk)

2. Do the regression on dataset D−k , obtaining regression
function r−k

3. Using this regression predict the value for the missing point:

Ŷk = r−k(Xk)

4. Repeat this process for k = 1, . . . ,N. Estimate the EPE
according to:

1

N

N∑
k=1

(Ŷk − Yk)2
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Cross-validation example

I Let’s try an example application: We have a dataset and wish
to consider whether to use the straight line relation

Y = aX + b,

or the quadratic relation

Y = a′X 2 + b′X + c

I We know that the fitted residuals for the quadratic model will
always be smaller than for the linear model

I The predictive error is not necessarily smaller with the
additional adjustable parameters. We thus use our EPE as a
means to decide between models

I We’ll try this on a simulated dataset of size N = 100
I Where the linear model is correct
I Where a quadratic term is present

I MATLAB function crossval is used to perform the EPE
estimates, with calls of the form:
crossval(’mse’,x,y,’Predfun’,@linereg,’leaveout’,1);
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Cross-validation example

I Left: Data samples generated according to a linear model
Y = X (filled circles) or a quadratic model Y = X + 0.03X 2

(plus symbols)

I Middle: Distribution of quadratic model minus linear model
EPE for data generated according to a linear model

I Right: Distribution of quadratic model minus linear model
EPE for data generated according to a quadratic model

(from NarskyPorter(2014), Wiley)
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Cross-validation example

I When the linear model is correct, choosing the linear model
when the difference is larger than zero gets it right in 84 out
of 100 cases

I When the quadratic model is correct, choosing the quadratic
model when the difference is less than zero gets it right in 79
out of 100 cases

Remark

I Leave-one-out cross-validation is suitable for small datasets.
For large N, required computer time may be prohibitive

I For large dataasets, we may use K-fold cross-validation. The
dataset is divided into K disjoint subsets of size m ≈ N/K.
Leave-one-out cross-validation corresponds to K = N

I See, eg, NarskyPorter(2014), Wiley, and references therein for
further development
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Next: Density Estimation
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Supplemental material
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Watson test

I Another variation on the Cramér–von Mises approach is the
Watson test

U2
N = N

∫ ∞
−∞

{
FN(x)− F (x)−

∫ ∞
−∞

[FN(y)− F (y)] dF (y)

}2

dF (x)

I Here, the difference between empirical and theoretical
distributions is “corrected” by subtracting the mean difference.

I Thus, this test ignores a simple shift and concentrates on
higher order differences.
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Neyman smooth test

I Unsatisfied with limitations of the χ2 test (in particular, its
inability to detect runs, for example, successive histogram bins
improbably “running” higher than the model, as deviations
from H0), Neyman devised the Neyman smooth test

I The basic idea is to transform the data to quantities
uniformly-distributed under H0, and then use Legendre
polynomials to frame H1 as a “smooth” pdf with degree of
smoothness determined by the order of the polynomials used

I The observed moments with respect to the Legendre
polynomials may then be compared with the values of zero
expected under H0

I One feature of this approach is that it provides a framework to
investigate in more detail the reason for a bad fit to the model
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Neyman smooth test

I If the density under the null hypothesis is g(x |H0), we make
the transformation x → u according to:

u =

∫ x

−∞
g(x ′|H0)dx ′

I Under H0, u is uniformly distributed on (0, 1), with pdf
f (u) = 1

I The GOF test of H0 is thus one of testing uniformity of the
distribution for u
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Neyman smooth test

I This is framed as a test against H1:

H1 : f (u|θ) = exp

[
−C (θ) +

K∑
k=1

θkPk(2u − 1)

]
, u ∈ (0, 1),

where θ = (θ1, . . . , θk), C (θ) provides normalization, and Pk

is the k-th Legendre polynomial

I The parameters θ are expansion coefficients in a truncated
Legendre series.

I The highest degree polynomial included, K , is called the order
of the test.

I Notice that the test may be rephrased as:

H0 : θ = 0,

H1 : θ 6= 0
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Neyman smooth test

I To complete the construction of a test statistic, a set of
“optimal” values for θ may be chosen, typically by maximizing
the likelihood under H1, yielding parameter estimates θ̂(x)

I Then either a likelihood ratio statistic or a Wald test statistic
may be constructed. For example, the likelihood ratio statistic
is:

λ =
L(θ = 0; x)

L(θ = θ̂; x)

I H0 has been treated as a simple hypothesis. However, the
method may be applied to composite H0 as well. According to
the above approach, the test may be expressed in terms of a
statistic with χ2 asymptotic distribution
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*Multivariate tests – Energy tests

I An approach to the multivariate goodness of fit problem with
a physical appeal is an energy test

I The test is based on the quantity

φ =
1

2

∫ ∫
g(x)g(x ′)R(‖x − x ′‖)dxdx ′,

where R(y) is a “potential energy” function

I If R = 1/|x − x ′| we see that φ looks like the Coulomb energy
of a charge distribution given by g

I Here, let g be the difference between a pdf being tested and
the pdf under H0

I Smaller values of φ correspond to better agreement with H0
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*Multivariate tests – Energy tests

I Idea may be implemented with a MC approach, in order to
deal with the difficulty of multi-dimensional integrals

I Thus, we compare our observations x1, . . . , xN with simulated
data under H0, y1, . . . yM

I See Aslan and Zech, NIM A 537 (2005) 626; Aslan and Zech,
arXiv:hep-ex/0203010v5 for details

I The distribution of φ under H0 depends on R as well as H0. It
is not readily calculated, but may be estimated via simulations
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*Multivariate tests – Energy tests

I Various choices for function R have been proposed, with
different choices suitable for different distrubutions.

I For example, a logarithmic form:

Rlog(r) =

{
− log r r > a,

− log a r < a

may appropriate for slowly varying distributions.

I A Gaussian form may be more optimal for rapidly varying
distributions. For example, Williams (2010) chooses

R(‖xi − yj‖) = exp

[
−
‖xi − yj‖2

2σ(xi )σ(xj)

]
,

with σ(x) vaying as 1/f0(x) where f0 is the null hypothesis
density, so that areas of high density are relatively highly
weighted. With this weight function, Williams obtains
powerful results for a Dalitz plot analysis with rapid variations
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*MV tests – Transformation to a uniform distribution

I An step that is useful in some approaches to multivariate GOF
testing is to first make a transformation of the distribution
under the null hypothesis.

I Idea is to transform the distribution to a uniform distribution
on the unit D-cube.

I Then one can work on tests of uniformity in multidimensions.

I See Rosenblatt, Ann.Math.Stat., 23 (1952) 470;
NarskyPorter(2014), Wiley for details

I The transformation is not unique and GOF on the different
choices may not be equivalent. Good practice is to first put it
into approximately factorized form, perhaps with a rotation

I If not factorizable, at least look for factorizable subsets that
can be investigated further
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*MV tests – Transformation to a uniform distribution

I With our transformation complete, we may design tests for
uniformity on the D-cube.

I Whatever statistic is defined, its distribution under the null
hypothesis of uniformity is completely determined by D and N.

I Many tests can be imagined using the distances between
sampled data in this D-cube.

I See, e.g., NarskyPorter(2014), Wiley for specific
implementations, including SLEUTH (Abbott et al. Phys.Rev.
D 62 (2000)092004) and nearest neighbors (Narsky,
arXiv:physics/0306171v1 (2003)).
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*MV tests – Local density tests

I The MV GOF problem can be thought of as testing whether
the spatial distribution of observed points in our observation
space is consistent with the hypothesized model.

I Thus, we may estimate the local density of observations
around any given point and compare with the prediction of
the model

I Idea is similar to the notion of nearest neighbors, except that
we compare densities of observations, not distributions of
distances.

I Can apply to either transformed or non-transformed variables.

I Let I (statement) be an indicator function, that is:

I (statement) =

{
1 if statement is true,

0 if statement is false.
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*MV tests – Local density tests

I Let |xi − xj | be the distance between observtions xi and xj .
Any metric could be tried, Euclidean distance is probably a
good choice.

I Then

Ni ≡
N∑
j 6=i

I (‖xi − xj‖ < r)

counts the number of observations in our dataset within a
distance r of observation i .

I The quantity Ni/Vr , where Vr is the volume of the (hyper-)
sphere of radius r , is thus a measure of the local density of
observations in the vicinity of observation i .

I If the underlying sampling distribution is uniform, then we
have expectation value E (Ni ) = (N − 1)Vr/V , where V is the
total volume of our sampling space (assumed finite)

September 20, 2013 Frank Porter, Flecken-Zechlin School . . . Modern Amplitude Analysis Techniques 100



*MV tests – Local density tests

I If the data are sampled from a uniform distribution, the
observations will tend to be “maximally spread out” in a
statistical sense, compared with a distribution with peaks.
[Another extreme, where the data may be sampled from a
regular grid of values, will be more spread out than for a
uniform distribution, and may also be of interest]

I That is, the values of Ni/Vr will tend to cluster around the
average density of points (excluding one), (N − 1)/V .

I If the sampling distribution is not uniform, there must be
clustering around other values than (N − 1)/V , that is,
regions of higher density.

I This results in Ni values that are higher than for the uniform
case, on average. Hence, a candidate statistic is the sum of
the Ni ’s over the dataset, for a given r .

I For details of computing a suitable test statistic K , including
the boundary issue, see Williams (2010); Ripley, J.R.Stat.Soc.
B 39 (1977) 172; NPwiley
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*MV tests – Local density tests

I Statistic K may be computed for different values of r , giving
sensitivity at different scales, and a plot of K against r
provides a useful visual tool.

I This method provides a simple way to test for uniformity. It
can be generalized for other distributions by “dividing out”
the the hypothethical local density of observations.

I Williams (2010) applies this to the example of the Dalitz plot.
The method is especially powerful when there are large local
deviations from the model. It is not so useful for small
datasets, where the local density estimates have large variance.

I For a review of the intimately related subject of nearest
neighbor methods, see http://www.public.iastate.edu/

~pdixon/stat406/NearestNeighbor.pdf
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*MV tests – Other methods
I Kernel based tests:

I We will discuss kernel density estimation later
I Provides a means to GOF test by comparing the estimator

with the H0 model
I Mixed sample tests

I May wish to compare two datasets to see whether they are
consistent with being drawn from the same population.

I For example, comparing an experimentally observed dataset
with a Monte Carlo simulation.

I One approach to the multivariate problem combines the
nearest neighbor idea with pooling the data, that is combining
the two datasets

I A statistic is formed that is sensitive to whether neighbors are
from the same or different dataset

I Using a classifier
I Many classifiers are well-suited to MV problems
I Run a classifier on the two samples, getting scores
I Compare scores with a univariate test (due care to determining

expected distribution under H0)
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Chi-square test for shape

Even though we don’t expect it to follow a χ2 distribution, we may
evaluate the test statistic:

χ2 =
k∑

i=1

(
ui
Nu
− vi

Nv

)2

ui
N2

u
+ vi

N2
v

.

If ui = vi = 0, the contribution to the sum from that bin is zero.
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Geometric (BDM) test for shape

Geometric motivation: Let the bin contents of a histogram define a
vector in a k-dimensional space. If two vectors are drawn from the
same distribution (null hypothesis), they will tend to point in the
same direction (not interested in the lengths of the vectors here).
If we represent each histogram as a unit vector with components:

{u1/Nu, . . . , uk/Nu}, and {v1/Nv , . . . , vk/Nv},

we may form the “dot product” test statistic:

TBDM =

√
u

Nu
· v

Nv
=

(
k∑

i=1

uivi
NuNv

)1/2

.

This is known as the “Bhattacharyya distance measure” (BDM).
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Sample application of BDM test

Apply this formalism to our example. The sum over bins gives
0.986. According to our estimated distribution of this statistic
under the null hypothesis, this gives a P-value of 0.97, similar to
the χ2 test result ( 0.95).
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Left: Bin-by-bin contributions to the BDM test statistic for the
example.
Right: Estimated distribution of the BDM statistic for the null
hypothesis in the example.
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Kolmogorov-Smirnov test

Another approach to a shape test may be based on the
Kolmogorov-Smirnov (KS) idea: Estimate the maximum
difference between observed and predicted cumulative distribution
functions and compare with expectations.
Modify the KS statistic to apply to comparison of histograms as
follows. Assume neither histogram is empty. Form the “cumulative
distribution histograms” according to:

uci =
i∑

j=1

uj/Nu vci =
i∑

j=1

vj/Nv .

Then compute the test statistic:

TKS = max
i
|uci − vci |.

(We consider only the two-tail test here.)
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Sample application of KS test

Apply this formalism to our example. The maximum over bins is
0.043. Estimating the distribution of this statistic under H0 gives
a p-value of 0.61, somewhat smaller than for the χ2 test result,
but indicating consistency of the histograms. KS will tend to
emphasize differences near the peak of the distribution, since that
is where the Poisson fluctuations are greatest.
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Left: Bin-by-bin distances for the KS test statistic for the example.
Right: Estimated PDF of the KS distance under H0 in the example.
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Cramér-von-Mises test
The idea of the Cramér-von-Mises (CVM) test is to add up the
squared differences between the cumulative distributions being
compared. Used to compare an observed distribution with a
presumed parent continuous probability distribution. Algorithm is
adaptable to the two-sample comparison, and to the case of
comparing two histograms.
The test statistic for comparing the two samples x1, x2, . . . , xN
and y1, y2, . . . , yM is [T. W. Anderson, On the Distribution of the
Two-Sample Cramér-Von Mises Criterion, Ann. Math. Stat. 33
(1962) 1148]:

T =
NM

(N + M)2


N∑
i=1

[Ex(xi )− Ey (xi )]2 +
M∑
j=1

[Ex(yj)− Ey (yj)]2

 ,

where Ex is the empirical cumulative distribution for sampling x .
That is, Ex(x) = n/N if n of the sampled xi are less than or
equal to x .
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Cramér-von-Mises test – Adaptation to comparing
histograms

Adapt this for the present application of comparing histograms
with bin contents u1, u2, . . . , uk and v1, v2, . . . , vk with identical
bin boundaries: Let z be a point in bin i , and define the empirical
cumulative distribution function for histogram u as:

Eu(z) =
i∑

j=1

ui/Nu.

Then the test statistic is:

TCVM =
NuNv

(Nu + Nv )2

k∑
j=1

(uj + vj) [Eu(zj)− Ev (zj)]2 .
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Sample application of CVM test

Apply this formalism to our example, finding TCVM = 0.132. The
resulting estimated distribution under the null hypothesis is shown
below. According to our estimated distribution of this statistic
under the null hypothesis, this gives a P-value of 0.45, somewhat
smaller than the χ2 test result.
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Left: Example histograms.
Right: Estimated PDF of the CVM statistic under H0 for the
example.
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Anderson-Darling (AD) test for shape

The Anderson-Darling (AD) test is another non-parametric
comparison of cumulative distributions. It is similar to the
Cramér-von-Mises statistic, but is designed to be sensitive to the
tails of the CDF. The original statistic was designed to compare a
dataset drawn from a continuous distribution, with CDF F0(x)
under the null hypothesis:

A2
m = m

∫ ∞
−∞

[Fm(x)− F0(x)]2

F0(x) [1− F0(x)]
dF0(x),

where Fm(x) is the empirical CDF of dataset x1, . . . xm.
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Anderson-Darling (AD) test, adaptation to
comparing histograms

Scholz and Stephens [ k-Sample Anderson-Darling Tests, J. Amer.
Stat. Assoc. 82 (1987) 918] provide a form of this statistic for a
k-sample test on grouped data (e.g., as might be used to compare
k histograms). The expression of interest for two histograms is:

TAD =
1

Nu + Nv

kmax−1∑
j=kmin

tj

Σj
(
Nu + Nv − Σj

) gg{ [(Nu + Nv )Σuj − NuΣj
]2
/Nu

+
[
(Nu + Nv )Σvj − Nv Σj

]2
/Nv gg},

where kmin is the first bin where either histogram has non-zero
counts, kmax is the number of bins counting up the the last bin
where either histogram has non-zero counts, and

Σuj ≡
j∑

i=1

ui , Σvj ≡
j∑

i=1

vi , and Σj ≡
j∑

i=1

ti = Σuj + Σvj .
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Sample application of AD test for shape

We apply this formalism to our example. The sum over bins gives
0.849. According to our estimated distribution of this statistic
under the null hypothesis, this gives a P-value of 0.45, somewhat
smaller than the χ2 test result
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Left: Example histograms.
Right: Estimated distribution of the AD test statistic for the null
hypothesis for the example.

September 20, 2013 Frank Porter, Flecken-Zechlin School . . . Modern Amplitude Analysis Techniques 114



Likelihood ratio test for shape

Base a shape test on the same conditional likelihood idea as for
the normalization test. Now there is a binomial associated with
each bin. Start with the null hypothesis, that the two histograms
are sampled from the joint distribution:

P(u, v) =
k∏

i=1

µuii
ui !

e−µi
νvii
vi !

e−νi ,

where νi = aµi for i = 1, 2, . . . , k . That is, the “shapes” of the
two histograms are the same, although the total contents may
differ.
With ti = ui + vi , and fixing the ti at the observed values, we
have the multi-binomial form:

P(v |u + v = t) =
k∏

i=1

(
ti
vi

)(
νi

νi + µi

)vi
(

µi
νi + µi

)ti−vi
.
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Likelihood ratio test for shape (continued)

The null hypothesis is νi = aµi , i = 1, . . . , k . We want to test
this, but there are two complications:

I The value of “ a” is not specified;

I We still have a multivariate distribution.

For a, we will substitute an estimate from the data, namely the
maximum likelihood estimator:

â =
Nv

Nu
.

We use a likelihood ratio statistic to reduce the problem to a single
variable. This will be the likelihood under the null hypothesis (with
a given by its maximum likelihood estimator), divided by the
maximum of the likelihood under the alternative hypothesis.
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Likelihood ratio test for shape (continued)

We form the ratio:

λ =
maxH0 L(a|v ; u + v = t)

maxH1 L({ai ≡ νi/µi}|v ; u + v = t)
=

k∏
i=1

(
â

1+â

)vi ( 1
1+â

)ti−vi(
âi

1+âi

)vi ( 1
1+âi

)ti−vi .
The maximum likelihood estimator, under H1, for ai is just
âi = vi/ui .
Thus, we rewrite our test statistic as:

λ =
k∏

i=1

(
1 + vi/ui

1 + Nv/Nu

)ti
(

Nv

Nu

ui

vi

)vi

.

In practice, we’ll work with

−2 lnλ = −2
k∑

i=1

[
ti ln

(
1 + vi/ui

1 + Nv/Nu

)
+ vi ln

(
Nv

Nu

ui

vi

)]
.

If ui = vi = 0, the bin contributes zero.

If vi = 0, contribution is −2 lnλi = −2ti ln
(

Nu
Nu+Nv

)
.

If ui = 0, the contribution is −2 lnλi = −2ti ln
(

Nv
Nu+Nv

)
.
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Sample application of lnλ test

Apply this test to example, obtaining
−2 lnλ =

∑k
i=1−2 lnλi = 25.3.

Asymptotically, −2 lnλ should be distributed as a χ2 with
NDOF = k − 1, or NDOF = 39. If valid, this gives a p-value of
0.96, to be compared with a probability of 0.96 according to the
estimated actual distribution.
Obtain nearly the same answer as the application of the chi-square
calculation with no bins combined, a result of nearly bin-by-bin
equality of the two statistics.
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i ( squares) as a function of
histogram bin in the comparison of the two distributions
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Likelihood value test

An often-used but controversial goodness-of-fit statistic is the
value of the likelihood at its maximum value under the null
hypothesis. It can be demonstrated that this statistic carries little
or no information in some situations. However, in many cases in
the limit of large statistics it is essentially the chi-square statistic,
so there are known situations were it is a plausible statistic to use.
We look at it here.
Using the results in the previous section, the test statistic is:

lnL = −
k∑

i=1

[
ln

(
ti
vi

)
+ ti ln

Nu

Nu + Nv
+ vi ln

Nv

Nu

]
.

If either Nu = 0 or Nv = 0, then lnL = 0.
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Sample application of the lnL test

Apply this test to the example. The sum over bins gives 79.
According to our estimated distribution of this statistic under the
null hypothesis, this gives a p-value of 0.91, similar to the χ2 test
result. The fact that it is similar may be expected because our
example is reasonably approximated by the large statistics limit.
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Estimated distribution of the lnL test statistic for the null
hypothesis in our example.
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Consistency of two correlated results

E.g., question of whether a new analysis is consistent with an old
analysis

I Often, new analysis is a combination of additional data plus
changed (improved. . . ) analysis of original data

I The issue is handling the correlation in testing for consistency
in the overlapping data

I Statistical differences can arise even comparing results based
on the same events

Simple check: Given a sampling θ̂1, θ̂2 from a bivariate normal
distribution N(θ, σ1, σ2, ρ), with 〈θ̂1〉 = 〈θ̂2〉 = θ, the difference
∆θ ≡ θ̂2 − θ̂1 is N(0, σ)-distributed with σ2 = σ2

1 + σ2
2 − 2ρσ1σ2

If the correlation is unknown, all we can say is that the variance of
the difference is in the range (σ1 − σ2)2 . . . (σ1 + σ2)2. If we at
least believe ρ ≥ 0 then the maximum variance of the difference is
σ2

1 + σ2
2
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Consistency – Simple example of two analyses on
same events

Suppose we measure a neutrino mass, m, in a sample of n = 10
independent events. The measurements are xi , i = 1, . . . , 10.
Assume the sampling distribution for xi is N(m, σi ).
We may form unbiased estimator, m̂1, for m:

m̂1 = 1
n

∑n
i=1 xi ±

√
1
n2

∑n
i=1 σ

2
i .

The result (from a MC) is m̂1 = 0.058± 0.039
Then we notice that we have further information which might be
useful: we know the experimental resolutions, σi for each
measurement. We form another unbiased estimator, m̂2, for m:

m̂2 =

∑n
i=1

xi
σ2
i∑n

i=1
1

σ2
i

± 1√∑n
i=1

1

σ2
i

The result (from the same MC) is m̂1 = 0.000± 0.016
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Example continued

I The results are certainly correlated, so question of consistency
arises (we know the error on the difference is between 0.023
and 0.055)

I In this example, the difference between the results is
0.058± 0.036, where the 0.036 error includes the correlation
(ρ = 0.41).
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Consistency – Evaluating the Correlation

I Art Snyder developed an approximate formula for evaluating
the correlation in a comparison of ML analyses (eg, in
one-dimensional case)

I Suppose we perform two ML analysis, with event likelihoods
L1, L2, on the same set of N events [may use different
information in each analysis]. Results are estimators θ̂1, θ̂2 for
parameter θ

I The correlation coefficient ρ may be estimated according to:

ρ ≈
∑N

i=1 Ri
d lnL1i

dθ |θ=θ̂1

d lnL2i
dθ |θ=θ̂2√(∑N

i=1
d2 lnL1i

dθ2 |θ=θ0

)(∑N
i=1

d2 lnL2i
dθ2 |θ=θ0

) ,
where (θ0 is an expansion reference point)

Ri =

[
1− (θ̂1 − θ0)

d2 lnL1i

dθ2
|θ=θ0

gg/
d lnL1i

dθ
|
θ=θ̂0

] [
1− (θ̂2 − θ0)

d2 lnL2i

dθ2
|θ=θ0

gg/
d lnL2i

dθ
|
θ=θ̂0

]
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Consistency – Evaluating the Correlation

If θ0 ≈ θ̂1 ≈ θ̂2, then

ρ ≈ σ̃θ1 σ̃θ2

N∑
i=1

d lnL1i

dθ
|θ=θ̂0

d lnL2i

dθ
|θ=θ̂0

,

where σ̃2
θk
≡ 1/

∑N
i=1

(
dLki
dθ |θ=θ0

)2
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Consistency – Example: sin 2β

I 32× 106 BB̄ pairs – PRL, vol 87, 27 August 2001:

sin 2β = 0.59± 0.14(stat)± 0.05(syst)

I 62× 106 BB̄ pairs – SLAC-PUB-9153, March 2002:

sin 2β = 0.75± 0.09(stat)± 0.04(syst)

I Second result includes the earlier data, re-reconstructed.
Analysis involves multivariate ML fits; reprocessing changes,
eg, relative likelihood for an event to be signal or background.
Not simply counting events. Are the two results statistically
consistent?

I If these were independent data sets, a difference of
0.16± 0.17 would not be a worry. The issue is the correlation.

I A specialized analysis deriving from the previous formula is
performed on the events in common between the two
analyses. A correlation of ρ = 0.87 is deduced, yielding a
difference of ∼ 2.2σ.
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Goodness-of-Fit – Considerations and Comparisons
Case Study: Testing Consistency of Two Histograms

I Sometimes we have two histograms and are faced with the
question: “Are they consistent?”

I That is, are our two histograms consistent with having been
sampled from the same parent distribution?

I Each histogram represents a sampling from a multivariate
Poisson distribution.

Example of two histograms to be
compared

arXiv:0804.0380
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Testing Consistency of Two Histograms

There are two variants of interest to this question:
I 1. We wish to test the hypothesis (absolute equality):

I H0: The means of the two histograms are bin-by-bin equal,
against

I H1: The means of the two histograms are not bin-by-bin equal

I 2. We wish to test the hypothesis (shape equality):
I H ′0: The densities of the two histograms are bin-by-bin equal,

against
I H ′1: The densities of the two histograms are not bin-by-bin

equal
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Testing Consistency of Two Histograms – Some
Context

I We have listed several tests addressing whether a dataset is
consistent with having been drawn from some continuous
distribution

I These tests may often be adapted to address whether two
datasets have been drawn from the same continuous
distribution, called two-sample tests

I These tests may then be further adapted to the present
problem, of determining whether two histograms have the
same shape. Also discussed as comparing whether two (or
more) rows of a table are consistent
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Notation, Conventions

We assume that we have formed our two histograms with the same
number of bins, k , with identical bin boundaries. The bin contents
of the “first” histogram are given by realization u of random
variable U, and of the second by realization v of random variable
V . Thus, the sampling distributions are:

P(U = u) =
k∏

i=1

µuii
ui !

e−µi ,

P(V = v) =
k∏

i=1

νvii
vi !

e−νi ,

where the vectors µ and ν are the mean bin contents of the
respective histograms
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Notation, Conventions (continued)

We define:

Nu ≡
k∑

i=1

Ui , Total contents of first histogram,

Nv ≡
k∑

i=1

Vi , Total contents of second histogram,

µT ≡ 〈Nu〉 =
k∑

i=1

µi

νT ≡ 〈Nv 〉 =
k∑

i=1

νi

ti ≡ ui + vi , i = 1, . . . , k

Will drop distinction between random variable and realization
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*Large Statistics Case

If all of the bin contents of both histograms are large, we use the
approximation that the bin contents are normally distributed.
Under H0,

E (ui ) = E (vi ) ≡ µi , i = 1, . . . , k

More properly, it is E (Ui ) = µi , etc., but we are permitting ui to
stand for the random variable as well as its realization. Let the
difference for the contents of bin i between the two histograms be:

∆i ≡ ui − vi ,

and let the standard deviation for ∆i be denoted σi . Then the
sampling distribution of the difference between the two histograms
is:

P(∆) =
1

(2π)k/2

(
k∏

i=1

1

σi

)
exp

(
−1

2

k∑
i=1

∆2
i

σ2
i

)
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*Large Statistics Case – Test Statistic

I This suggests the test statistic:

T =
k∑

i=1

∆2
i

σ2
i

I If the σi were known, this would simply be distributed
according to the chi-square distribution with k degrees of
freedom

I We’ll use the Neyman modified χ2 statistic, in which σ2
i is

estimated by the sampled bin contents. We have already
noted that it is asymptotially χ2 distributed

I We’ll refer to this approach as a “χ2” test
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*Large Statistics Algorithm – absolute

We suggest the following algorithm for this test:

1. For σ2
i form the estimate

σ̂2
i = (ui + vi )

2. Statistic T is thus evaluated according to:

T =
k∑

i=1

(ui − vi )
2

ui + vi

If ui = vi = 0 for bin i , the contribution to the sum from that
bin is zero

3. Estimate the p-value according to a χ2 with k degrees of
freedom. Note that this is not an exact result
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*Large Statistics Algorithm – shapes

If only comparing shapes, then scale both histogram bin contents:
I Let

N = 0.5(Nu + Nv ).

Scale u and v according to:

ui → u′i = ui (N/Nu)

vi → v ′i = vi (N/Nv ).

I Estimate σ2
i with:

σ̂2
i =

(
N

Nu

)
ui +

(
N

Nv

)
vi .

I Statistic T is thus evaluated according to:

T =
k∑

i=1

(
ui
Nu
− vi

Nv

)2

ui
N2
u

+ vi
N2
v

.

I Estimate the p-value according to a chi-square with k − 1
degrees of freedom. Note that this is not an exact result.
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*Application to Example
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With some small bin counts, might not expect this method to be
especially good for our example, but try it anyway:

Type of test T P(χ2 > T ) p-value

χ2 absolute comparison 29.4 0.88 0.86
χ2 shape comparison 24.9 0.96 0.95

Likelihood Ratio shape comparison 25.3 0.96 0.96
Kolmogorov-Smirnov shape comparison 0.043 NA 0.61
Bhattacharyya shape comparison 0.986 NA 0.97
Cramér-Von-Mises shape comparison 0.132 NA 0.45
Anderson-Darling shape comparison 0.849 NA 0.45
Likelihood value shape comparison 79 NA 0.91

Column “p-value” attempts a better estimate of the probability,
under H0, that a value for T will be as large as observed. Compare
with column P(χ2 > T ) column, the probability assuming T
follows a χ2 distribution with NDOF degrees of freedom.
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*Application to Example (continued)

I The absolute comparison yields slightly poorer agreement
than the shape comparison

I The total number of counts in one dataset is 492; in the other
it is 424.

I Treating these as samplings from a normal distribution with
variances 492 and 424, we find a difference of 2.2 standard
deviations or a two-tailed p-value of 0.025

I This low probability is severely diluted by the bin-by-bin test

I The two histograms were generated with a 10% difference in
total expected counts

I Lesson:
The more you know about what you want to test, the better
(more powerful) the test you can make
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*An Issue: We don’t know H0!

Evaluation of the probability under H0 is in fact problematic, since
H0 isn’t completely specified

I The problem is the dependence of Poisson probabilities on the
absolute numbers of counts. Probabilities for differences in
Poisson counts are not invariant under the total expected
number of counts

I Unfortunately, we don’t know the true mean numbers of
counts in each bin. Thus, we must estimate these means

I The procedure adopted here has been to use the MLE (see
later) for the mean numbers, in the null hypothesis.

We’ll have further discussion of this procedure below – It does not
always yield valid results
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*General (Including Small Statistics) Case

I If the bin contents are not large, then the normal
approximation may not be good enough and the “χ2 statistic”
may not follow a χ2 distribution

I Simple approach is to combine bins until the normal
approximation is valid. In some cases this doesn’t lose too
much statistical power

I Try this on our example, as a function of the minimum
number of events per bin. The algorithm is to combine
corresponding bins in both histograms until both have at least
“minBin” counts in each bin
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*Combining bins for χ2 test
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Left: The example pair of histograms
Middle: The blue dots show the value of the test statistic T , and
the red pluses show the number of histogram bins for the data in
the example, as a function of the minimum number of counts per
bin
Right: The p-value for consistency of the two datasets in the
example The red pluses show the probability for a chi-square
distribution, and the blue dots show the probability for the actual
distribution, with an estimated null hypothesis.
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*Working with the Poissons - Normalization Test

I Alternative: Work with the Poisson distribution. Separate the
problem of the shape from that of the overall normalization.

I To test normalization, compare totals over all bins between
the histograms. Distribution is

P(Nu,Nv ) =
µNu
T νNv

T

Nu!Nv !
e−(µT +νT ).

I The null hypothesis is H0 : µT = νT , to be tested against
alternative H1 : µT 6= νT . We are interested in the difference
between the two means; the sum is a nuisance parameter.
Hence, consider: [Application of conditional likelihood!]

P(Nv |Nu + Nv = N) =
P(N|Nv )P(Nv )

P(N)

=
µN−Nv
T e−µT

(N − Nv )!

νNv
T e−νT

Nv !

/
(µT + νT )Ne−(µT +νT )

N!

=

(
N
Nv

)(
νT

µT + νT

)Nv
(

µT
µT + νT

)N−Nv
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*Normalization test (general case)

I This probability permits us to construct a uniformly most
powerful test of our hypothesis (E. L. Lehmann and Joseph
P. Romano, Testing Statistical Hypotheses, 3rd ed., Springer,
NY (2005)). It is a binomial distribution, for given N. The
UMP holds independently of N, although the probabilities
cannot be computed without N

I The null hypothesis corresponds to µT = νT , that is:

P(Nv |Nu + Nv = N) =

(
N
Nv

)(
1

2

)N

.

I For our example, with N = 916 and Nv = 424, the p-value is
0.027, for a two-tailed probability. Compare with our earlier
estimate of 0.025 in the normal approximation.

I Mimicing more closely the normal estimate by excluding
one-half the probability at the endpoints, we obtain 0.025,
essentially the normal number.

September 20, 2013 Frank Porter, Flecken-Zechlin School . . . Modern Amplitude Analysis Techniques 142



Testing the Shape – Catalog of Tests

Many possible tests. We consider 7:

I “Chi-square test” (χ2)

I Bhattacharyya distance measure (BDM)

I Kolmogorov-Smirnov test (KS)

I Cramér-von-Mises test (CVM)

I Anderson-Darling test (AD)

I Likelihood ratio test (lnλ)

I Likelihood value test (lnL)

We have introduced some of these in one-sample discussion; with
suitable modification, we show the results for the present
two-sample problem in the earlier table [Details in supplement]
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Distributions Under the Null Hypothesis

I We have been overly glib so far – we still have some lessons to
learn. . .

I How do we know our p-values are right?
I Which tests are better (powerful)?

I When the asymptotic distribution may not be good enough,
we would like to know the probability distribution of our test
statistic under H0

I Difficulty: H0 is not completely specified!

I The problem is that the distribution depends on the values of
νi = aµi . H0 only says νi = aµi , but says nothing about what
µi might be

I Also doesn’t specify a, but that complication appears
manageable (although in extreme situations one might need
to check for dependence on a)
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Estimating the null hypothesis

I Turn again to the data to make an estimate for µi , to be used
in estimating the distribution of our test statistic

I A straightforward approach is to use the ML parameter
estimators (under H0):

µ̂i =
1

1 + â
(ui + vi ),

where â = Nv/Nu

ν̂i =
â

1 + â
(ui + vi )

I Make repeated simulations using these values for the
parameters of the sampling distribution. For each simulation,
a value of the test statistic is obtained. This provides an
estimate of the distribution of the test statistic under H0, and
p-values may be computed from this

I Variations in the estimates for µ̂i and â may be used to check
robustness of the probability estimates
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Trouble in River City. . .

I We have just described the approach that was used to
compute the estimated probabilities for the opening example

I The bin contents are reasonably large, and this approach
works well enough for this case

I Unfortunately, this approach does very poorly in the
low-statistics realm

I Consider a simple test case: Suppose our data is sampled from
a flat distribution with a mean of 1 count in each of 100 bins
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Algorithm to check estimated null hypothesis

We test how well our estimated null hypothesis works for any given
test statistic, T , as follows:

I Generate a pair of histograms according to the distribution
above

I Compute T for this pair of histograms

I Given the pair of histograms, compute the estimated null
hypothesis according to the specified prescription above

I Generate many pairs of histograms according to the estimated
null hypothesis in order to obtain an estimated distribution for
T .

I Using the estimated distribution for T , determine the
estimated p-value for the value of T found in step 2.

I Repeat steps 2-6 many times and make a histogram of the
estimated p-values. This histogram should be uniform if the
estimated p-values are good estimates.
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Checking the estimated null distribution

I The next two slides show tests of the estimated null
distribution for each the 7 test statistics.

I Shown are distributions of the simulated p-values. The data
are generated according to H0, consisting of 100 bin
histograms for:

I A mean of 100 counts/bin (left column), or
I A mean of 1 count/bin (other 3 columns).

I The estimates of H0 are:

I Weighted bin-by-bin average (left two columns),
I Each bin mean given by the average bin contents in each

histogram (third column),
I Estimated with a Gaussian kernel estimator (right column)

based on the contents of both histograms.

I The χ2 is computed without combining bins
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Summary of tests of null distribution estimates

Probability that H0 is rejected with a cut at 1% on the estimated
distribution. H0 is estimated with the bin-by-bin algorithm in the
first two columns, by the uniform histogram algorithm in the third
column, and by Gaussian kernel estimation in the fourth column.

Test stat. Prob. (%) Prob. (%) Prob. (%) Prob. (%)

Bin mean 100 1 1 1
H0 est. bin-by-bin bin-by-bin uniform kernel

χ2 0.97± 0.24 18.5± 1.0 1.2± 0.3 1.33± 0.28
BDM 0.91± 0.23 16.4± 0.9 0.30± 0.14 0.79± 0.22
KS 1.12± 0.26 0.97± 0.24 1.0± 0.2 1.21± 0.27
CVM 1.09± 0.26 0.85± 0.23 0.8± 0.2 1.27± 0.28
AD 1.15± 0.26 0.85± 0.23 1.0± 0.2 1.39± 0.29
lnλ 0.97± 0.24 24.2± 1.1 1.5± 0.3 2.0± 0.34
lnL 0.97± 0.24 28.5± 1.1 0.0± 0.0 0.061± 0.061
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Conclusions from tests of null distribution estimates

I In the “ small statistics” case, if the null hypothesis were to
be rejected at the estimated 0.01 probability, the bin-by-bin
algortihm for estimating ai would actually reject H0: 19%
of the time for the χ2 statistic, 16% of the time for the
BDM statistic, 24% of the time for the lnλ statistic, and
29% of the time for the L statistics, all unacceptably larger
than the desired 1%. The KS, CVM, and AD statistics are
all consistent with the desired 1%.

I In the “ large statistics” case, where sampling is from
histograms with a mean of 100 counts in each bin, all test
statistics display the desired flat distribution.

I The χ2, lnλ, and lnL statistics perform essentially identically
at high statistics, as expected, since in the normal
approximation they are equivalent.
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Problem appears for low statistics

I Issue for the bin-by-bin approach appears at low statistics.

I Intuition: Consider the likely scenario at that some bins will
have zero counts in both histograms. Then our algorithm for
the estimated null hypothesis yields a zero mean for these
bins. The simulation to determine the probability distribution
for the test statistic will always have zero counts in these bins,
ie, there will always be agreement between the two
histograms. Thus, the simulation will find that low values of
the test statistic are more probable than it should.

I The AD, CVM, and KS tests are more robust under our
estimates of H0 than the others, as they tend to emphasize
the largest differences and are not so sensitive to bins that
always agree. For these statistics, our bin-by-bin procedure for
estimating H0 does well even for low statistics, although we
caution again that we are not examining the far tails of the
distribution.
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Obtaining better null distribution estimates

I A simple approach to salvaging the situation in the low
statistics regime involves relying on the often valid assumption
that the underlying H0 distribution is “smooth”. Then only
need to estimate a few parameters to describe the smooth
distribution, and effectively more statistics are available.

I Assuming a smooth background represented by a uniform
distribution yields correct results. This is cheating a bit, since
we perhaps aren’t supposed to know that this is really what
we are sampling from.

I The lnL and, perhaps, to a much lesser extent the BDM
statistic, do not give the desired 1% result, but now err on
the “conservative” side. It may be possible to mitigate this
with a different algorithm. We may expect the power of these
statistics to suffer under the approach taken here.
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More “honest” – Try a kernel estimator

Since we aren’t supposed to know that our null distribution is
uniform, we also try a kernel estimator for H0, using the sum of
the observed histograms as input. Try a Gaussian kernel, with a
standard deviation of 2. In general, works pretty well, though room
for improvement. Bandwidth was chosen here to be rather small for
technical reasons; a larger bandwidth would likely improve results.
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Sample Gaussian kernel density estimate of the null hypothesis.
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Comparison of Power of Tests

I Now that we have addressed how to estimate H0, what test is
best? Need to think about power

I The power depends on what the alternative hypothesis is.

I Investigate (eg) by adding a Gaussian component on top of a
uniform background distribution in one histogram. Motivated
by the scenario where one distribution appears to show
peaking structure, while the other does not.

I We also look at a different extreme, a rapidly varying
alternative.
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Gaussian alternaitve

The Gaussian alternative data are generated as follows:

I The background (null distribution) has a mean of one event
per histogram bin.

I The Gaussian has a mean of 50 and a standard deviation of
5, in units of bin number.

I We vary the amplitude of the Gaussian and count how often
the null hypothesis is rejected at the 1% confidence level.
The amplitude is measured in percent, eg, a 25% Gaussian
has a total amplitude corresponding to an average of 25% of
the total counts in the histogram. The Gaussian counts are
added to the counts from the null distribution.
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Sample Gaussian alternative
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Left: The mean bin contents for a 25% Gaussian on a flat
background of one count/bin (note the suppressed zero).
Right: Example sampling from the 25% Gaussian (filled blue dots)
and from the uniform background (open red squares).
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Power estimates for Gaussian alternative

On the next two slides, we show, for seven test statistics, the
distribution of the estimated probability, under H0, that the test
statistic is worse than that observed.

I Three different magnitudes of the Gaussian amplitude are
displayed.

I The data are generated according to a uniform distribution,
consisting of 100 bin histograms with a mean of 1 count, for
one histogram, and for the other histogram with a uniform
distribution plus a Gaussian of strength:

I 12.5% (left column),

I 25% (middle column), and

I 50% (right column).

[The χ2 is computed without combining bins.]
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Power comparison summary - Gaussian peak
alternative

Estimates of power for seven different test statistics, as a function
of H1. The comparison histogram (H0) is generated with all
k = 100 bins Poisson of mean 1. The selection is at the 99%
confidence level, that is, the null hypothesis is accepted with (an
estimated) 99% probability if it is true. [red is most powerful]

H0 12.5 25 37.5 50 -25
Stat. % % % % % %

χ2 1.2± 0.3 1.3± 0.3 4.3± 0.5 12.2± 0.8 34.2± 1.2 1.6± 0.3
BDM 0.30± 0.14 0.5± 0.2 2.3± 0.4 10.7± 0.8 40.5± 1.2 0.9± 0.2
KS 1.0± 0.2 3.6± 0.5 13.5± 0.8 48.3± 1.2 91.9± 0.7 7.2± 0.6
CVM 0.8± 0.2 1.7± 0.3 4.8± 0.5 35.2± 1.2 90.9± 0.7 2.7± 0.4
AD 1.0± 0.2 1.8± 0.3 6.5± 0.6 42.1± 1.2 94.7± 0.6 2.8± 0.4
lnλ 1.5± 0.3 1.9± 0.3 6.4± 0.6 22.9± 1.0 67.1± 1.2 2.4± 0.4
lnL 0.0± 0.0 0.1± 0.1 0.8± 0.2 6.5± 0.6 34.8± 1.2 0.0± 0.0
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Power comparison summary - Gaussian peak
alternative
Po

w
er

 (%
)

Gaussian Amplitude (%)

Summary of power of seven different test statistics, for the
alternative hypothesis with a Gaussian bump.
Left: linear vertical scale; Right: logarithmic vertical scale.
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Power comparison - High statistics

We also look at the performance of our seven tests for histograms
with large bin contents.
Estimates of power for seven different test statistics, as a function
of H1. The comparison histogram ( H0) is generated with all
k = 100 bins Poisson of mean 100. The selection is at the 99%
confidence level.

H0 5 -5
Statistic % % %

χ2 0.91± 0.23 79.9± 1.0 92.1± 0.7
BDM 0.97± 0.24 80.1± 1.0 92.2± 0.7
KS 1.03± 0.25 77.3± 1.0 77.6± 1.0
CVM 0.91± 0.23 69.0± 1.1 62.4± 1.2
AD 0.91± 0.23 67.5± 1.2 57.8± 1.2
lnλ 0.91± 0.23 79.9± 1.0 92.1± 0.7
lnL 0.97± 0.24 79.9± 1.0 91.9± 0.7
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Comments on power comparison - High statistics

I In this large-statistics case, for the χ2 and similar tests, the
power to reject a dip is greater than the power to reject a
bump of the same area.

I Presumably because the “error estimates” for the χ2 are
based on the square root of the observed counts, and hence
give smaller errors for smaller bin contents.

I Also observe that the comparative strength of the KS, CVM,
and AD tests versus the χ2, BDM, lnλ, and lnL tests in
the small statistics situation is largely reversed in the large
statistics case.
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Power study for a “sawtooth” alternative

For a very different alternative distribution, consider sampling from
the “sawtooth” distribution. Compare again to samplings from the
uniform histogram.

I The “percentage” sawtooth here is the fraction of the H0

mean. A 100% sawtooth on a 1 count/bin background
oscillates between a mean of 0 counts/bin and 2 counts/bin.

I The period of the sawtooth is two bins.
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Left: The mean bin contents for a 50% sawtooth on a background
of 1 count/bin (blue), and for the flat background (red))
Right: A sampling from the 50% sawtooth (blue) and from the
uniform background (red))
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Sawtooth alternative power results

Estimates of power for seven different test statistics, for a
“sawtooth” alternative distribution.

50 100
Statistic % %

χ2 3.7± 0.5 47.8± 1.2
BDM 1.9± 0.3 33.6± 1.2
KS 0.85± 0.23 1.0± 0.2
CVM 0.91± 0.23 1.0± 0.2
AD 0.91± 0.23 1.2± 0.3
lnλ 4.5± 0.5 49.6± 1.2
lnL 0.30± 0.14 10.0± 0.7

Now the χ2 and lnλ tests are the clear winners, with BDM next.
The KS, CVM, and AD tests reject the null hypothesis with the
same probability as for sampling from a true null distribution. This
very poor performance for these tests is readily understood, as
these tests are all based on the cumulative distributions, which
average out local oscillations.
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Conclusions from hypothesis test case study

These studies provide some lessons in hypothesis testing:

I No single best test for all applications. The statement “test X
is better than test Y” is empty without more context. E.g.,
the Anderson-Darling test is often very powerful in testing
normality of data against alternatives with non-normal tails
(eg, a Cauchy distribution). It is not always especially
powerful in other situations. The more we know about what
we wish to test, the better we can choose a powerful test.
Each of the tests here may be useful, depending on the
circumstance.

I Even the controversial L test works as well as the others
sometimes. However, the situations where it is observed to
perform as well are here limited to those where it is equivalent
to another test.
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Conclusions (continued)

I Computing probabilities via simulations is a useful technique.
However, must be done with care. Tests with an incompletely
specified null hypothesis require care. Generating a
distribution according to an assumed null distribution can lead
to badly wrong results. It is important to verify the validity of
the procedure. We have only looked into tails at the 1% level.
Validity must be checked to whatever level of probability is
needed. Should not assume that results at the 1% level will
still be true at, say, the 0.1% level.

I Concentrated on the question of comparing two histograms.
However, considerations apply more generally, to testing
whether two datasets are consistent with being drawn from
the same distribution, and to testing whether a dataset is
consistent with a predicted distribution. The KS, CVM, AD,
lnL, and L tests may all be constructed for these other
situations (as well as the χ2 and BDM, if we bin the data).
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