
Statistics IV

Frank Porter

September 21, 2013

September 21, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 1



Plan for the Statistics Lectures

I Lecture I (Wednesday, September 18, 11:45-12:30)

1. Important probability concepts
2. Point estimation

I Lecture II (Thursday, September 19, 10:45-12:30)

1. Frequency and Bayes interpretations
2. Interval estimation
3. Systematic uncertainties

I Lecture III (Friday, September 20, 10:45-12:30)

1. Hypothesis tests
2. Resampling methods

I Lecture IV (Saturday, September 21, 10:45-12:30)

1. Density estimation
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Density estimation

1. Empirical density estimator

2. Histograms

3. Kernel estimation

4. Ideogram

5. Parametric vs non-paerametric

6. Optimization

7. Estimating errors

8. Curse of dimensionality

9. Naive Bayes

10. Orthogonal series

11. Monte Carlo models

12. Unfolding

13. sPlots

September 21, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 3



Density estimation

I Density estimation deals with the problem of estimating a pdf
based on some data sampled from the pdf

I It may use assumed forms of the distribution, parameterized in
some way (parametric statistics)

I Or it may avoid making assumptions about the form of the
pdf (non-parametric statistics)

I We have discussed parametric statistics, now we are
concerned more with the non-parametric case
distinct concepts

We’ll assume we have a dataset of iid observations (possibly
vectors), x1, . . . , xN from pdf f (X ). The problem is to estimate f
Our estimator will be denoted f̂ . f̂ (X ) is a RV
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Motivation

I Why non-parametric estimates?

I Maybe don’t have a parametric model

I Maybe can’t do an analytic calculation, and must simulate our
model

I May be easier/better than parametric modeling for efficiency
corrections and background subtraction

I Visualization

I Smoothing

I Unfolding

I Comparing samples (eg, when simple moments may not
capture enough complexity)
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Empirical density estimator

A basic density estimate is the Empirical Probability Density
Function (epdf). Place a delta function at each data point:

f̂ (X ) =
1

N

N∑
n=1

δ(X − xn)

X could be multi-dimensional here; the scatter plot presents a
representation of a 2-dimensional epdf

0 200 400 600 800 1000
x

NarskyPorter(2014), Wiley
The points are at ∞, with the
“area” under a point equal to 1/N.
Here, N = 100, and the sampling
distribution is a ∆(1232)
Breit-Wigner (with pion and nucleon
masses subtracted) on a 2nd degree
polynomial background. The
background probability is 50%.

Have already seen the epdf as the sampling density for the
bootstrap procedure
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The Histogram

A familiar density estimator is based on the histogram:

h(x) =
N∑

n=1

I (x − x̃n;w),

where x̃n is the center of the bin in which observation xn lies, w is
the bin width, and

I (x ;w) =

{
1 x ∈ [−w/2,w/2)

0 otherwise

This function is called the indicator function
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NarskyPorter(2014), Wiley

Histogram with w = 10, for the
sample above
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The Histogram

I This is written for uniform bin widths, but may be generalized
to differing widths with appropriate relative normalization
factors

I Given a histogram, the estimator for the probability density
function is:

f̂ (x) =
1

Nw
h(x)

Criticisms of Histogram as Density Estimator

I Discontinuous even if pdf is continuous

I Dependence on bin size and bin origin

I Information from location of datum within a bin is ignored
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Kernel Estimation

Take the histogram, but replace indicator function I with
something else:

f̂ (x) =
1

N

N∑
n=1

k(x − xn;w)

where k(x ,w) is the kernel function, normalized to unity:∫ ∞
−∞

k(x ;w) dx = 1

Usually interested in kernels of the form

k(x − xi ;w) =
1

w
K

(
x − xi
w

)
,

The kernel estimator for the pdf is then:

p̂(x) =
1

nw

n∑
i=1

K

(
x − xi
w

)
The role of parameter w as a smoothing parameter is evident
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Kernel Estimation

I Often, the particular form of the kernel used doesn’t matter
very much. Illustrated below for several kernels (with
commensurate smoothing parameters)

I Gaussian kernel is probably the most popular, and is smooth

Comparison of density estimates
using different kernels

I Black (highest): sampling
distribution

I Black (lower): estimate with
Gaussian kernel

I Green: indistinguishable
triangular and cosine kernel
estimates

I Blue: rectangular kernel
estimate
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NarskyPorter(2014), Wiley
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Multi-Variate Kernel Esitmation

Explicit multi-variate case, d = 2 dimensions:

f̂ (x , y) =
1

Nwxwy

N∑
n=1

K

(
x − xn
wx

)
K

(
y − yn
wy

)
This is a product kernel form, with the same kernel in each
dimension, except for possibly different smoothing parameters. It
does not have correlations

The kernels we have introduced are classified more explicitly as
fixed kernels: The smoothing parameter is independent of x
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Ideogram

A simple variant on the kernel idea is to permit the kernel to
depend on additional knowledge in the data.

I Physicists call this an ideogram

I Most common is the Gaussian ideogram, in which each data
point is entered as a Gaussian of area one and standard
deviation appropriate to that datum

I This addresses a way that the iid assumption might be broken

[Aside: Be careful to get your likelihood function right if you are
incorporating variable resolution information in your fits; see, e.g.,
Punzi: http://www.slac.stanford.edu/econf/C030908/

papers/WELT002.pdf]
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Sample Ideogram

WEIGHTED AVERAGE�
493.664±0.011 (Error scaled by 2.5)

Values above of weighted average, error,�
and scale factor are based upon the data in
this ideogram only.  They are not neces-�
sarily the same as our `best' values,
obtained from a least-squares constrained fit�
utilizing measurements of other (related)
quantities as additional information.

BACKENSTO... 73 0.4
CHENG 75     K Pb  13-12 0.8
CHENG 75     K Pb  12-11 3.6
CHENG 75     K Pb  11-10 0.5
CHENG 75     K Pb  10-9 0.1
CHENG 75     K Pb  9-8 1.1
BARKOV 79 0.0
LUM  81 0.2
GALL 88         K W   11-10 2.2
GALL 88         K W   9-8 0.4
GALL 88         K Pb  11-10 0.2
GALL 88         K Pb  9-8 22.6
DENISOV 91 20.5

2

      52.6
(Confidence Level  0.001)

493.5 493.6 493.7 493.8 493.9 494

mK± (MeV)

(from RPP 2006)
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Parametric vs non-Parametric Density Estimation (I)

I Distinction is fuzzy

I A histogram is non-parametric, in the sense that no
assumption about the form of the sampling distribution is
made

I Often an implicit assumption that distribution is “smooth” on
scale smaller than bin size. Eg, we know something about the
resolution of our apparatus

I But the estimator of the parent distribution made with a
histogram is parametric – the parameters are populations (or
frequencies) in each bin. The estimators for those parameters
are the observed histogram populations. Even more
parameters than a typical parametric fit!
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Parametric vs non-Parametric Density Estimation
(II)

I Essence of difference may be captured in notions of “local”
and “non-local”:

I If a datum at xn influences the density estimator at some other
point x this is non-local

I A non-parametric estimator is one in which the influence of a
point at xn on the estimate at any x with distance(xn, x) > ε
vanishes, asymptotically

I Notice that for a kernel estimator, the bigger the smoothing
parameter w , the more non-local the estimator,

f̂ (x) =
1

Nw

N∑
n=1

K

(
x − xn
w

)
I The “optimal” choice of smoothing parameter depends on N

September 21, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 15



Optimization

We would like to make an optimal density estimate from our data.

I What does that mean?

I Need a criterion for “optimal”

I Choice of criterion is subjective; it depends on what you want
to achieve.

I We may compare the estimator for a quantity (here, value of
the density at x) with the true value: ∆(x) = f̂ (x)− f (x)

x

f(x)f(x)

f(x)f(x)

^
(x)Δ
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Mean Squared Error (I)

A common choice in parametric estimation is to minimize the sum
of the squares. We may take this idea over here, and form the
Mean Squared Error (MSE):

MSE[f̂ (x)] ≡ E

{[
f̂ (x)− f (x)

]2}
= var[f̂ (x)] + bias2[f̂ (x)]

where

var[f̂ (x)] ≡ E

[(
f̂ (x)− E [f̂ (x)]

)2]
bias[f̂ (x)] ≡ E [f̂ (x)]− f (x)
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Mean Squared Error (II)

Since this isn’t quite our familiar parameter estimation, let’s take a
little time to make sure it is understood:

Suppose p̂(x) is an estimator for the pdf f (x), based on data
{xn; n = 1, . . . ,N}, iid from f (x). Then

E [f̂ (x)] =

∫
· · ·
∫

f̂ (x ; {xn}) Prob ({xn})dn({xn})

=

∫
· · ·
∫

f̂ (x ; {xn})
N∏

n=1

[f (xn)dxi ]
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*Exercise: Proof of formula for the MSE

MSE[f̂ (x)] = E
[
(f̂ (x)− f (x))2

]
=

∫
· · ·
∫ [

f̂ (x ; {xi})− f (x)
]2 N∏

n=1

[f (xn)dxn]

=

∫
· · ·
∫ [

f̂ (x ; {xi})− E (f̂ (x)) + E (f̂ (x))− f (x)
]2 N∏

n=1

[f (xn)dxn]

=

∫
· · ·
∫ { [

f̂ (x ; {xi})− E (f̂ (x))
]2

+
[
E (f̂ (x))− f (x)

]2
−2
[
f̂ (x ; {xi})− E (f̂ (x))

] [
E (f̂ (x))− f (x)

]} N∏
n=1

[f (xn)dxn]

= var[f̂ (x)] + bias2[f̂ (x)] + 0

[In typical treatments of parametric statistics, we assume
unbiased estimators. That isn’t a good assumption here.]
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The Problem With Smoothing (I)

Theorem: [Rosenblatt (1956)] A uniform minimum variance
unbiased estimator for f (x) does not exist.

I Unbiased:
E [f̂ (x)] = f (x)

I Uniform minimum variance:

var
[
f̂ (x)|f (x)

]
≤ var [ĝ(x)|f (x)] , ∀x ,

for all f (x), where ĝ(x) is any other estimator of f (x)
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The Problem With Smoothing (II)

For example, suppose we have a kernel estimator:

f̂ (x) =
1

N

N∑
n=1

k(x − xn;w)

Its expectation is:

E [f̂ (x)] =
1

N

N∑
n=1

∫
k(x − xn;w)f (xn)dxn

=

∫
k(x − y)f (y)dy

Unless k(x − y) = δ(x − y), f̂ (x) will be biased for some f (x).
But δ(x − y) has infinite variance
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The Problem with Smoothing (III)

So the nice properties we strive for in parameter estimation (and
sometimes achieve) are beyond reach.
Intuition: smoothing lowers peaks and fills in valleys.

I Red curve: pdf

I Histogram for a sampling
from pdf

I Black curve: Gaussian kernel
estimator for pdf using the
same sampling
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NarskyPorter(2014), Wiley
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Dependence on Smoothing Parameter

Plot showing effect of choice of smoothing parameter:
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Red: Sampling PDF
Black: Default smoothing (w)
Blue: w/2 smoothing
Turquoise: w/4 smoothing
Green: 2w smoothing

NarskyPorter(2014), Wiley
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More on Optimization

I The MSE for a density is a measure of uncertainty at a point

I Useful to summarize the uncertainty over all points, a notion
for the “distance” from function f̂ (x) to function f (x)

I A convenient choice is the Integrated Squared Error (ISE):

ISE ≡
∫ [

f̂ (x)− f (x)
]2

dx

I The ISE depends on the true density, the estimator, and the
sampled data

I Remove this latter dependence by evaluating the Mean
Integrated Squared Error (MISE), or equivalently, the
integrated mean square error (IMSE):

MISE ≡ E [ISE] = E

[∫ [
f̂ (x)− f (x)

]2
dx

]
=

∫
E

[(
f̂ (x)− f (x)

)2]
dx =

∫
MSE

[
f̂ (x)

]
dx ≡ IMSE
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Optimization – Consistency

A desirable property of an estimator is that the error decreases as
the number of samples increases. This is a familiar notion from
parametric statistics

Definition
A density estimator f̂ (x) is consistent iff:

MSE
[
f̂ (x)

]
≡ E

[
f̂ (x)− f (x)

]2
→ 0

as N →∞
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*Choosing Histogram Binning

Considerations such as minimizing the MSE may be used to choose
an “optimal” bin width for a histogram
Theorem: The MSE of the histogram estimator is consistent if the
bin width w → 0 as N →∞ such that Nw →∞

I The w → 0 requirement insures that the bias will approach
zero, according to our earlier discussion

I The Nw →∞ requirement ensures that the variance
asymptotically vanishes.

I Arguments exist that optimal bin size should decrease as
1/N1/3

I A popular choice is Sturges’ rule, which says that the number
of bins should be

k = 1 + log2N

It is the default choice when making a histogram in R.
I Another popular choice is Scott’s rule for the bin width is:

w = 3.5sN−1/3,

where s is the sample standard deviation
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Choosing Histogram Binning

I These rules often leave the impression that the binning could
usefully be finer. If data are unimodal, then the rules may
reasonably apply. If not then a more adaptive approach is
required to obtain optimal results. If additional information is
available, eg, the experimental resolution, this can help to
inform the bin width choice

I Curve is the sampling pdf

I The “standard rules” (Sturges,
Scott, Freedman-Diaconis)
correspond roughly to the coarser
binning above

I The shaded histogram seems like a
better choice, illustrating that blind
application of the rules to
complicated data may not yield
desired result
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The Curse of Dimensionality

The The Curse of Dimensionality is a significant affliction in
density estimation

I Difficult to display and visualize as the number of dimensions
increases.

I “All” the volume (of a bounded region) goes to the boundary
(exponentially!) as the dimensions increases. I.e., data
becomes “sparse”

1/2

1/4
1/8

, . . . 1
2d

I Tendency for exponentially growing computation requirement
with dimensions

I Even worse than parametric statistics
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Summary

We have introduced:

I Basic notions in (non-parametric) density estimation

I Some simple variations on the theme

I A foundation towards optimization

I An idea of where and how things will fail

Next: Further sophistication on these ideas; and introduction of
other variations in approach and application
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Estimating errors

The bootstrap provides a way to evaluate how good is our density
estimate
The bootstrap algorithm in this context is as follows:

1. Form density estimate f̂ from data {xn; n = 1, . . . ,N}
2. Resample (uniformly) N values from {xn; n = 1, . . . ,N}, with

replacement, obtaining {x∗n ; n = 1, . . . ,N} (bootstrap replica)

3. Form density estimate f̂ ∗ from replica {x∗n ; n = 1, . . . ,N}
4. Repeat steps 2&3 many (B) times to obtain a family of

bootstrap density estimates {f̂ ∗b ; b = 1, . . . ,B}
5. The distribution of f̂ ∗b about f̂ mimics the distribution of f̂

about f
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Estimating errors – variance

I Consider, for a kernel density estimator, the expectation of the
boostrap dataset (exercise):

E
[
f̂ ∗(x)

]
= E [K (x − x∗n ;w)] = f̂ (x)

I The bootstrap distribution about f̂ does not reproduce the
bias which may be present in f̂ about f . It does reproduce the
variance of f̂ , hence the bootstrap is a useful tool for
estimating the variance of a density estimator
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Black: Gaussian Kernel EstimatorBlack: Gaussian Kernel Estimator
Other colors: Resampled Kernel EstimatorsOther colors: Resampled Kernel Estimators
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Estimating errors – bias

I We use a variation of the bootstrap, called the smoothed
bootstrap, to obtain an estimate for the bias

I In this case, the replicas are sampled from the (kernel)
estimate for the density, instead of from the empirical density

I Denote the kernel estimate by f̂w (x), where w indicates the
dependence on the smoothing parameter

I Suppose we draw a smoothed bootstrap replica x∗ from this
distribution

I We can make a kernel density estimate from this replica, f̂ ∗w (x)

I Now the bias of f̂ ∗w (x) compared with f̂w (x) will mimic the
bias of f̂w (x) compared with f (x). Thus, using the smoothed
bootstrap we may estimate the full MSE
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Estimating errors – bias

I On the next slide: Use of the bootstrap to determine the
variance and bias of a Gaussian kernel density estimator. The
sample is size N = 1000

I Left: Solid curve shows the sampling distribution; heavy
dashed curve shows a kernel estimator; lighter dotted curves
show 15 bootstrap replica kernel estimators

I Right: Solid curve is the kernel density estimator from the
dashed curve on the left plot; lighter dotted curves show 15
smoothed bootstrap replica kernel estimators

I The bias of the smoothed bootstrap replicas about the kernel
density estimator mimics the bias of the kernel estimator
compared with the true distribution

I Can use this to correct for bias

I Could further construct confidence intervals (e.g., using the
percentile method) including the effect of bias

I The smoothed bootstrap introduces some extra variance,
which may be corrected for
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Estimating errors – bias
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Estimating errors – bias

I Besides the bootstrap, the jackknife and cross-validation may
also be used to estimate errors (and hence smoothing
optimization) in kernel estimation

I Eg, we may use the jackknife to estimate bias.

I The idea is that bias depends on sample size. If we can
assume that the bias vanishes asymptotically, we may use the
data to estimate the dependence of the bias on sample size.

I We use a delete-d version here, with k = N/d . A simple
algorithm is:

1. Divide the data into k random disjoint subsamples.
2. Evaluate the estimator for each subsample.
3. Compare the average of the estimates on the subsamples with

the estimator based on the full dataset.
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Estimating errors – bias
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    together for jackknife)

NarskyPorter(2014), Wiley

Jackknife estimation of bias
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Adaptive Kernel Estimation

I We saw that it is probably more optimal to use variable bin
widths in histograms

I This applies also to other kernels

I Indeed, the use of a fixed smoothing parameter, deduced from
all of the data introduces a non-local, hence parametric,
aspect into the estimation

I More consistent to look for smoothing which depends on data
locally: adaptive kernel estimation

I The more data there is in a region, the better that region can
be estimated. Thus, in regions of high density, we should use
narrower smoothing
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Adaptive Kernel Estimation

I We could derive algorithms based on optimizing MISE to
carry this out.

I Generally begin with initial fixed kernel estimate to get a
starting density estimate, then iterate as needed

I E.g., for Poisson statistics, adaptive smoothing parameter
w(x) ∼

√
σ/f (x)N−1/5 where the power of N is the value

that minimizes MISE for a Gaussian kernel and normal
sampling (Taylor, Biometrika 76 (1989) 705)

I There are packages for adaptive kernel estimation, eg, KEYS
(Kernel Estimating Your Shapes) (Cranmer,
Comp.Phys.Comm., 136 (2000) 198)
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Adaptive Kernel Estimation

Example of the KEYS adaptive kernel estimation

Figure 9 – Non-parametric p.d.f.s:  Left: histogram of unbinned input data, Middle: Histogram-
based p.d.f (2nd order interpolation), Right: KEYS p.d.f from original unbinned input data. I Left: Input data

I Middle: Histogram-based estimate with second order
interpolation

I Right: KEYS adaptive kernel estimate

(RooFit manual, Verkerke and Kirkby)
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Multivariate Kernel Estimation

I Multi-dimensional case introduces issue of covariance

I With a product kernel, the local estimator has diagonal
covariance matrix

I Could apply a local linear transformation of the data to a
coordinate system with diagonal covariance matrices.
Amounts to a non-linear transfomation of the data in a global
sense; may not be easy

I But we can try the system for which the overall covariance
matrix of the data is diagonal
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Multivariate Kernel Estimation

I If {yn}Nn=1 is the diagonalized data, the product fixed kernel
estimator in D dimensions is:

f̂0(y) =
1

N

N∑
n=1

[
D∏

d=1

1

wd
K

(
y (d) − y

(d)
n

wd

)]
,

where y (d) denotes the d-th component of the vector y

I The asymptotic, normal MISE-optimized smoothing
parameters are now:

wd =

(
4

D + 2

)1/(D+4)

σdN
−1/(D+4)

I Corresponding adaptive kernel estimator follows the discussion
as for the univariate case
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Multivariate Kernel Estimation

Example where the sampling distribution has diagonal covariance
matrix (locally and globally) NarskyPorter(2014), Wiley
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I Left: 2-D distribution with diagonal covariance matrix

I Middle: application of kernel estimation to this distribution

I Right: Same as middle, except using one-half the default
smoothing parameter
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Multivariate Kernel Estimation
Example with non-diagonal covariance matrix (above example
rotated 45◦) NarskyPorter(2014), Wiley
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We see on next slide that this is more difficult to handle with our
product kernel technology
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Multivariate Kernel Estimation

Kernel estimation applied to the 2-D data on the previous slide
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NarskyPorter(2014), Wiley

I Left: Default smoothing parameter

I Middle: Using one-half of the default smoothing parameter

I Right: Intermediate smoothing
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Estimation Using Orthogonal Series

Alternative approach: expand the pdf in a series of orthonormal
functions:

f (x) =
∞∑
k=0

akψk(x),

where

ak =

∫
ψk(x)f (x)ρ(x) dx = E [ψk(x)ρ(x)] ,∫
ψk(x)ψ`(x)ρ(x) dx = δk`,

ρ(x) > 0 is a weight function
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Estimation Using Orthogonal Series

I Expansion coefficients are expectation values of functions;
Natural to substitute sample averages as estimators
(substitution method!). This corresponds to using the
empirical probability distribution:

âk =

∫
ψk(x)f̂ (x)ρ(x) dx

=

∫
ψk(x)

1

N

N∑
n=1

δ(x − xn)ρ(x) dx

=
1

N

N∑
n=1

ψk(xn)ρ(xn)

I Thus:

f̂ (x) =
m∑

k=1

âkψk(x)

Number of terms m is chosen by some optimization criterion
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Estimation Using Orthogonal Series

I Analogy between m and smoothing parameter w in kernel
estimators; and between K and {ψk}

I Often applied with angular distributions with Legendre
polynomials or spherical harmonics

I We may try an example in a two-dimensional sampling space.
A dataset of size N = 1000 is generated according to density:

f (cos θ, φ) =
1

4π

(
1 +

1

2
cos θ +

1

2
sin θ cosφ

)
.

I Use a series of real linear cominations of Y`m spherical
harmonics to fit this data, according to the above substitution
method

I Since we know the true distribution, we may compute the
error in our density estimate

I We show result on next slide
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Estimation Using Orthogonal Series

Errors from fits to sample dataset generated according to previous
slide

NarskyPorter(2014), Wiley

I Left: Errors from fit with exactly the same angular functions
in the series as used to generate the data

I Right: Error for a series that has extra terms sin θ sinφ and
cos2 θ (in the form of suitable additional orthonormal Y`m’s)
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Estimation Using Orthogonal Series

I The errors become more serious when we add the terms

I We fit the empirical distribution more accurately with the
additional terms, but we do a poorer job of estimating the
actual distribution

I Extreme is the limit of keeping infinite terms in our expansion;
we recover the epdf
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Using Monte Carlo Models

I Often build a model using MC computations of different
processes, adding together to get the complete model

I May involve weighting of events, if more data is simulated for
some processes

I Overall simulated epdf is (xn is x
(d)
n , d = 1 . . .D):

f̂ (x) =
N∑

n=1

ρnδ(x − xn),

where
∑
ρn = 1 (or N for an event sample of some total size).

I The weights must be included in computing the sample
covariance matrix:

Σk` =
N∑

n=1

ρn
(x

(k)
n − µ̂k)(x

(`)
n − µ̂`)∑

j ρj
,

where µ̂d =
∑

n ρnx
(d)
n /

∑
j ρj is the sample mean in

dimension d
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Using Monte Carlo Models

I The simulated data is discrete; may use kernel smoothing to
obtain a continuous model

I Assuming we have transformed to a diagonal system using the
sample covariance matrix, the product kernel density based on
our simulation is then:

f̂0(x) =
1∑
j ρj

N∑
n=1

ρn

D∏
d=1

1

wd
K

(
x (d) − x

(d)
n

wd

)

I May be iterated to obtain an adaptive kernel estimator
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Unfolding

I May not be satisfied with estimating the density from which
our sample X was drawn

I Interesting physics may be obscured (smeared) by
transformation with uninteresting functions, eg, efficiency
dependencies, resolution, classification errors, etc.

I Similar to reconstructing an image from blurred photo
I We refer to the problem as one of unfolding the interesting

distribution from the sampled (i.e., smeared) distribution
I The term deconvolution is also used. Strictly, “unfolding” is

more general, not restricted to convolution smearing
I Theoretical reference Meister, Deconvolution problems in

Nonparametric Statistics (2009) Springer
I Image reconstruction in astrophysics: Puetter et al.,

Ann.Rev.Astron.Astrophys. 43 (2005) 139
I There are pitfalls to unfolding, so if all you really want is a

comparison of data with theory, it is better to smear the
theory than to unfold the data
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Unfolding

I Suppose there is a “fundamental” distribution, f (x), and a
transformation K mapping this distribution to the
“experimental” distribution, e(x):

e(x) =

∫
K (x , y)f (y)dy

I We sample from e(x), but want to learn about f (x)

I If f (x) were known up to parameters, we would address this
problem in the context of parameteric statistics

I Instead, consider the context of non-parametric density
estimation

I Assume that transformation K (x , y) is known. It is called the
point spread function because it gives the density at x from a
point density “source” at y . [Often, K is estimated from
auxillary data, and we must consider the uncertainties
(“systematic errors”) introduced]
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Unfolding

I When we sample from e, we obtain an estimator ê for e. Eg,
ê could be the empirical density estimator

I In principle, the estimation of f from this is easy:

f̂ (y) =

∫
K−1(y , x)ê(x)dx ,

where ∫
K−1(x , y)K (y , x ′) dy = δ(x − x ′)

I If ê(x) = 1
N

∑N
n=1 δ(x − xn) is the empirical distribution, then:

f̂ (y) =
1

N

N∑
n=1

K−1(y , xn)
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*Unfolding

I If we don’t know how to invert K , we may try an iterative
(e.g., Neumann series) solution

I Eg, consider the problem of unfolding radiative corrections in
a cross section measurement.

I The observed cross section, σE (s), is related to the
“interesting” cross section σ(s) according to:

σE (s) = σ(s) + δσ(s),

where

δσ(s) =

∫
K (s, s ′)σ(s ′) ds ′

I Form iterative estimate for σ(s) according to:

σ̂0(s) = σE (s)

σ̂i (s) = σE (s)−
∫

K (s, s ′)σ̂i−1(s ′) ds ′, i = 1, 2, . . .
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Unfolding

I Important case when measurement results in addition of a
stochastic error to a statistical sampling from the fundamental
distribution

I Then concerned with the addition of two independent RVs
I With fundamental distribution f and resolution density g , the

distribution of the sum of the two contributions is a
convolution:

e(x) =

∫
g(x − y)f (y)dy

I This suggests working in Fourier transform space, since then
the convolution simplifies to a product:

eFT(t) = gFT(t)fFT(t)

where, eg,

fFT(t) =

∫
e it·x f (x)dx

is the Fourier transfom of f (x)
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Unfolding

I To implement such an approach, we could use data to form
an empirical estimate êFT of eFT:

êFT (t) =

∫
e it·x ê(x)dx =

1

N

N∑
n=1

e it·xn

I We then divide out gFT to obtain estimator f̂FT . Then we
take the inverse Fourier transfom to get f̂

I A difficulty emerges in this last step – we may need to do
something (regularization) to ensure the inverse transform
exists and is not erratic (i.e., sensitive to small changes in the
data). We look at an example of this sort of problem below
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Unfolding

I We may equally well apply unfolding to a histogram with
Poisson-distributed bin contents x = x1, . . . , xb. Suppose the
fundamental distribution is

f (x) =
b∏

i=1

µxii e
−µi

xi !
, xi = 0, 1, . . .

and the experimental distribution is

e(x) =
b∏

i=1

νxii e
−νi

xi !
, xi = 0, 1, . . . ,

where the νi are related to µ by some transformation.

I Given a sampling x , the empirical (ML) distribution is

ê(y) =
b∏

i=1

xyii e−xi

yi !
, yi = 0, 1, . . .
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Unfolding

I Now suppose that the transformation is of the form:

ν = Aµ+ B

I Since A is a matrix, this includes the possibility that events
get assigned to the wrong bin, as well as possible inefficiencies

I The B term allows for possible “background” contributions

I Our estimate for ν is x . Thus, assuming A is invertible, we
estimate the unfolded distribution according to:

µ̂ = A−1(ν̂ − B)

[In practice we solve with an appropriate numerical algorithm]

I This provides an unbiased estimator for µ, in fact the MLE,
which is minimum variance (among unbiased estimators) since
our distribution is in the exponential family
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Unfolding – example

I Example: fundamental distribution with three Gaussian peaks,
and a total expected sample size of 5000

I The matrix A is taken to be:

Aij = 0.3/2|i−j |,

mimicing a situation with an overall inefficiency plus migration
among bins, where the migration probability decreases as bins
are further apart

I The “background” vector B is taken to be a vector with the
number five in each position
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Unfolding – example
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NarskyPorter(2014), Wiley

I Illustration of unfolding a histogram:
I (a) The fundamental expected bin contents
I (b) The expected bin contents after passing through the

detector and analysis
I (c) A sampling from (b), according to Poisson statistics. This

is our MLE for (b)
I (d) The unfolded distribution using the sampling in (c). This is

our estimate for the fundamental distribution
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Unfolding – example

I Plot (d) replicates the basic features of (a), but the
fluctuations may be disconcerting. This is a minimum
variance (among unbiased estimators) unbiased estimator for
the expectations in (a)

I In spite of its correctness, people may conclude that the
unfolding is unsatisfactory because of the large fluctuations.
What is the problem?

I Paying large price in variance for unbiasedness
I Transformation to the experimental distribution smoothes the

data, as may be seen comparing (b) with (a). This tends to
introduce bias and reduce variance

I We take data from the smoothed distribution, and apply the
“unsmoothing” transformation

I The smallish fluctuations in the dataset are amplified in the
process. We eliminate the bias, but increase the variance
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Unfolding – Regularization

I Often desirable to obtain a result with less erratic behavior,
essentially taking into account our expectation that the
fundamental distribution is smooth

I Accomplish this by accepting some bias, applying some
smoothing or interpolation in our unfolding process

I This is regularization
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*Unfolding – Remark, if needed

I In our histogram example, we might have imagined that our
experiment corresponds to a sampling x from the fundamental
distribution f , which is transformed to the data we actually
observe with y = Ax + B. If this is correct, we can simply
compute x = A−1(y − B) and exactly recover the sampling x
from the fundamental distribution and there is no additional
variance introduced

I However, this is not correct. Our sampling is from the
transformed distribution e, with whatever fluctuations that
allows

I Imagine a transformation that takes an expected signal of one
million events down to an expectation of just ten events. We
must deal with the statistics of ten instead of a million.
Effectively, the transformation has introduced noise into the
measurement
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Unfolding: Regularization

Many possible approaches to regularization in unfolding. All are
ways to trade bias for variance to achieve some optimal balance,
perhaps as measured by MISE. Smoothing techniques such as
kernels or orthogonal series that we have discussed already are
candidates

Eg, consider using kernel density estimation in the context of a
convolution kernel and the Fourier transform approach. Instead of
the empirical density estimate, we use kernel estimator

ê ′(x) =
1

Nw

N∑
n=1

K

(
x − xn
w

)
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Unfolding: Regularization

I Fourier transform is

ê ′FT(t) =
1

Nw

N∑
n=1

∫
e itxK

(
x − xn
w

)
= êFT(wt)KFT(wt),

where eFT is the empirical Fourier transform estimator

I Thus, our smoothed estimater for f (x) becomes:

f̂ ′(x) =
1

2πN

N∑
n=1

∫
e−it(x−xn)

KFT(wt)

gFT(t)
dt

Called the standard deconvolution kernel density estimator

I K is chosen to ensure that this transform exists, at least if
gFT(t) 6= 0, eg, K (x) = sin x/πx , with transform KFT(t) = 1
if t ∈ [−1, 1] and zero otherwise
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Unfolding: Regularization

I Alternative popular approach is to add a penalty function to
the optimization problem

I Eg, in a least-squares minimization, where we find µ = µ̂ that
minimizes (Aµ+ B − x)2, may instead minimize:

(Aµ+ B − x)2 + λ2(Lµ)2,

where L is some linear operator that measures lack of
smoothness in µ and λ is a regularization or smoothing
parameter

I Larger values of λ result in smoother density estimates. This
techinique is usually referred to as Tikhonov regularization

I As derivatives measure (lack of) smoothness, L may suitably
be chosen as a differential operator
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Unfolding: Regularization – Example

I For example, we return to our histogram example
I Since this involves discrete binning, our derivative operator

becomes a discrete approximation.The simplest choices, for
first- and second-derivatives, are [D1 is (N − 1)×N and D2 is
(N − 2)× N]:

D1 =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
. . . . . . . . . . . . . . . . . .
0 · · · 0 0 1 −1



D2 =


−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
. . . . . . . . . . . . . . . . . . . . .
0 · · · 0 −1 2 −1
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Unfolding: Regularization – Example
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NarskyPorter(2014), Wiley

I Results of Tikhonov regularization for sample histogram
I (a) and (b) use first derivative smoothing
I (c) and (d) use the second derivative
I (a) and (c) use smoothing parameter λ = 0.2
I (b) and (d) use λ = 1
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Unfolding: Regularization – Example

I Regularization substantially reduces the variance while adding
bias

I At least in this case, the choice of regulator is not very
important, but there is a clear, and plausible, dependence on
the parameter λ

I The paramter λ may be chosen, for example, to minimize
MISE

I It didn’t happen in this case, but Tikhonov regularization
allows estimators with negative values (if we had picked
smaller values for λ, we would have seen this). Not bad or
wrong, but may present difficulty if intended use is estimator
as a density in further sampling, for example in MC
simulations
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Bayesian Unfolding

I The unfolding problem may be addressed from Bayesian
perspective

I May have prior belief π(f ) concerning f . As prior belief
relates f at different points, the prior contributes a smoothing
effect in forming the posterior distribution, given by
P(f |x) ∝ P(x |f )π(f )

I Let’s try this out for the case of a histogram. We wish to
estimate the expected bin contents µ. Pick as the best
estimates those for which the posterior distribution is maximal

P(µ̂|x) = max
µ

P(x |µ)π(µ)

I Notice that, without the prior function π, this just gives us the
MLE that we obtained earlier. The prior provides regulation
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Bayesian Unfolding

I If we have a principled choice for π, we can use it

I But what if we wish to start with a notion of complete
ignorance?

I One view of complete ignorance is that a sampling is just as
likely to land in one bin as any other. That is, the probability
to land in bin i is

pi =
µi
µT

= pj =
µj
µT

= p =
1

b

That is, our prior distribution for µ is

π(µ) =
µT !∏b
i=1 µi !

1

bµT
,

where µT =
∑b

i=1 µi
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Bayesian Unfolding

I Instructive to introduce the notion of entropy, defined by:

H = −
b∑

i=1

pi log pi

This is maximized when pi = p, i = 1, . . . , b. We recover our
notion of complete ignorance as the distribution with
maximum entropy

I Apply this technique to our three-peak spectrum. Specifically,
maximize (dropping terms independent of µ):

log L(µ; x) + log π(µ) =
b∑

i=1

(xi log νi − νi ) + log Γ(µT + 1)

−
b∑

i=1

log Γ(µi + 1)− µT log b

September 21, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 73



Bayesian Unfolding
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NarskyPorter(2014), Wiley

I Unfolding a histogram with entropy regularization (λ = 1
corresponds to formula on previous slide)

I (a) λ = 0.01
I (b) λ = 0.1
I (c) λ = 1
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Bayesian Unfolding

I See that this smoothing works, but is smoother than we
probably wanted

I Unless one wants to insist that this is the “correct prior”,
things are getting pulled too far towards the ignorance prior
(or towards maximum entropy)

I We can easily salvage the situation if we are willing to give up
on a strict Bayesian interpretation

I We accomplish this by multiplying the prior (or the entropy, if
we use that for our regulating function) by a regularization
parameter, λ. That is, we find µ maximizing:

log L(µ; x) + λ log π(µ)

The results for λ = 0.01 and λ = 0.1 are shown as (a) and (b)
on the previous slide

I As before, the value of λ may be optimized to minimize the
MISE, in the context of some reasonable approximate model
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Unfolding – Conclusions

I To check and tune the unfolding procedure we may use the
estimated unfolded distribution as the “actual” distribution in
a simulated experiment. The unfolding procedure can be used
on the simulated data and compared with the distribution
used in the simulation.

I Possible to imagine refinements, such as adaptive
regularization. Eg, in image reconstruction there may be true
sharp edges that shouldn’t be smoothed as much as softer
areas

I Unfolding has pitfalls, and caution should be exercised lest
one creates a significant-looking peak where none really exists.
It should also be kept in mind that the result of unfolding
includes correlations. In an unfolded histogram the bin
contents are not independent RVs
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sPlots

A technique known as the sPlot may be employed to:

I Display estimated contributions of various components in a
distribution

I Perform background subtraction

I Reconstruct (eg) Dalitz-plot distributions for signal, and hence
to correct the signal yield for a selection efficiency varying
across the Dalitz plot, providing the signal branching fraction
without assumptions on the resonance structure of the signal

The sPlot is a multivariate technique that uses the distribution on
a subset of variables to predict the distribution in another subset.
It is based on a (parametric) model in the predictor variables, with
different categories or classes (e.g., “signal” and “background”).
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sPlots

I Assume there are K + R parameters in the overall fit to the
data

1. The expected number of events (observations),
n = {nk , k = 1, . . . ,K} in each class

2. distribution parameters, θ = {θi , i = 1, . . . ,R}
I Use a total of N events to estimate these parameters via a

ML fit to the (iid) sample x = x1, . . . , xN , where xe is a vector
of measurements for event number e

I The likelihood function is:

L(n, θ; x) =
N∏

e=1

K∑
k=1

nk
N

fk(xe ; θ),

where fk is the normalized probability density function for
category k, and the constraint

∑K
k=1 nk = N [can also do

case without this constraint]
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sPlots

I Goal is to find event weights wk(x ′e), depending only on
x ′e ⊆ xe (and implicitly on the unknown parameters), such that
the asymptotic distribution in Ye /∈ X ′e of the weighted events
is the sampling distribution in Ye , for any chosen class k

I Set relation on xe , etc., refers to elements of the set of vector
components. The possibility that x ′e = xe is included because
ye could refer to quantities that are not contained in xe

I It is assumed that Ye and X ′e are statistically independent
within each class. The wk(x ′e) are the weights we obtain in an
actual experiment of size N. They are RVs

I The empirical frequency distribution for y , in class k , is
estimated using the weights according to:

ĝk(y) =
N∑

e=1

wk(x ′e)δ(y − ye)
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sPlots

I Optimizing the variance of ĝ over all y and using the
substitution method to estimate unkown quantities yieds the
result (Pivk and Le Diberder, NIM A 555 (2005) 356):

w(x ′e) ≡ V̂ f (x ′e ; θ)∑K
k=1 nk fk(x ′e ; θ)

I Here, K × K matrix V is estimated with

ˆV−1 ≡
N∑

e=1

f (x ′e ; θ)f T (x ′e ; θ)[∑K
k=1 nk fk(x ′e ; θ)

]2
or from the covarince matrix of a fit excluding y

I The weights may be negative as well as positive
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sPlots

I Once the weights are determined, the sPlot is constructed by
adding each event e with y = ye to the y -histogram (or
scatter plot, etc, if y is multivariate), with weight wj(x

′
e)

I Resulting histogram is an estimator for the true distribution in
y for class j

I Typically the sPlot error in a bin is estimated simply according
to the sum of the squares of the weights. This sometimes
leads to visually misleading impressions, due to fluctuations on
small statistics

I If the plot is being made for a distribution for which there is a
prediction, then that distribution might be used to estimate
expected uncertainties, and these plotted

I Or, a (smoothed) estimate from the empirical distribution may
be used to estimate the expected errors
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sPlot – Example I

I Illustration of the sPlot technique
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Figure 1. Signal distribution of the ΔE variable. The left
figure is obtained applying a cut on the Likelihood ratio to
enrich the data sample in signal events (about 60% of signal
is kept). The right figure shows the sPlot for signal (all events
are kept).

I Left: A non-sPlot, which uses a subset of the data, selected on
signal likelihood, in an attempt to display signal behavior
(Aubert et al., PRL 89 (2002) 281802)

I Right: An sPlot for the signal category. Curve is expected
signal. Note excess of events at low ∆E . This turned out to
be an unexpected portion of the signal distribution, found
using the sPlot (Pivk, arXiv:physics/0602023v1( 2006))
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sPlot – Example II

The sPlot technique used for
background subtraction in mass
spectra:
The Kππ mass spectra in
B → γKππ after background
subtraction using sPlots
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