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Plan for the Statistics Lectures

I Lecture I (Wednesday, September 18, 11:45-12:30)

1. Important probability concepts
2. Point estimation

I Lecture II (Thursday, September 19, 10:45-12:30)

1. Frequency and Bayes interpretations
2. Interval estimation
3. Systematic uncertainties

I Lecture III (Friday, September 20, 10:45-12:30)

1. Hypothesis tests
2. Resampling methods

I Lecture IV (Saturday, September 21, 10:45-12:30)

1. Density estimation

Lecture boundaries won’t be so crisp!!
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A couple of toolkits for statistical problems. . .

R (free, open source)

> x <- rnorm(100,10,1)

> hist(x,xlim=range(5,15))

>

Histogram of x
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MATLAB (commercial)

>> x = normrnd(10, 1, 1, 100);

>> hist(x,5:.5:15)
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There are others. . .
September 18, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 3

http://cran.cnr.berkeley.edu
www.mathworks.com/products/matlab/


Advertisement

Copyright © 2000-2013 by John Wiley & Sons, Inc., or related companies. All rights reserved. 

Statistical Analysis Techniques in 
Particle Physics

US $99.95

This price is valid for United States. Change location to view 
local pricing and availability.

Home  /  Physics & Astronomy  /  Nuclear & High Energy Physics 

Modern analysis of HEP data needs advanced statistical tools to separate signal from 
background. This is the first book which focuses on machine learning techniques. It will be 
of interest to almost every high energy physicist, and, due to its coverage, suitable for 
students.

Ilya Narsky, Frank C. Porter

ISBN: 978-3-527-41086-6

Paperback
459 pages
December 2013

Description

Page 1 of 1Wiley: Statistical Analysis Techniques in Particle Physics - Ilya Narsky, Fr...

8/19/2013http://www.wiley.com/WileyCDA/WileyTitle/productCd-3527410864,desc...

Will refer to here as
“NarskyPorter(2014), Wiley”
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September 18, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 4



Other references

1. B. Efron and R. Tibshirani, An Introduction to the Bootstrap,
Chapman&Hall 1994.

2. E. Lehmann and J. Romano, Testing Statistical Hypotheses,
3rd Ed., Springer 2005.

3. D. Scott, Multivariate Density Estimation, Wiley 1992. A
standard treatment of density estimation.

4. J. Shao, Mathematical Statistics, 2nd Ed., Springer 2003. A
good, fairly recent general mathematical statistics textbook.

There are also many books written by particle physicists, such as
Barlow, Bohm and Zech, Cowan, James, Lyons, . . .
There is much good and very relevant material in these, but be
alert to implicit and explicit philosophical influences and physicist
idiosyncracies.
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Important probability concepts

1. The probability measure

2. Random variables

3. Some terminology

4. Central limit theorem

5. The exponential family

6. RCF theorem

7. Transformations and propagation of errors
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The probability measure

I Consider a space S , called a sample space.

I A probability P defined on sets E in S is a measure on S such
that P(S) = 1.

I We assume we deal with measurable sets. Then:
I P(E ) ≥ 0 for E ⊂ S
I If E ∩ F = ∅, then P(E ∪ F ) = P(E ) + P(F ).
I If S is an infinite sample space and E1,E2, . . . is an infinite

sequence of disjoint sets in S then

P(∪∞i=1) =
∞∑
i=1

P(Ei ).
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Random variables (RVs)

II Assume we have a correspondence between elements of S and
a set of real numbers RS (could be vectors)

I The probability measure on S then defines a measure on
R ⊃ RS , we’ll still call it P

I Mapping X ∈ RS is a “random variable”

I Define cumulative distribution function (cdf) FX (x):

FX (x) = P(X ≤ x)

I Define probability density function (pdf) fX (x) as the
differential of FX (x)

fX (x)dx = dFX (x)

I n.b., if distribution is “discrete” then measure is given by
Dirac δ functions, and integrals are sums
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Some terminology

I Expectation value of a function U(X ) of random variable X :

EF (U) ≡
∫
R

U(x)dFX (x)

Shorten to E (U) where there is no confusioon
I Mean of X is E (X )
I Variance of X is var(X ) = E [(X − E (X ))2]

Standard deviation is square root of variance
I In multivariate case, covariance is

Σij = cov(Xi ,Xj) ≡ E{[Xi − E (Xi )][Xj − E (Xj)}

Linear correlation coefficient is: ρ =
cov(Xi ,Xj )√

var(Xi )var(Xj )

I Two RVs are (statistically) independent if the joint pdf
factorizes:

fXY (x , y) = fX (x)fY (y)

If we have a sequence of independent RVs that are identically
distributed, we call them “iid”
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Central limit theorem

Let X1,X2, . . . ,XN be a sequence of iid RVs from distribution F ,
having finite mean µ and finite variance σ2. Let m = 1

N

∑N
n=1 Xn

be the sample mean. Then the distribution of m approaches
N(µ, σ2/N)

I We’ll forego the proof, with associated discussion of
convergence and characteristic functions

I Beware the proofs you find on the web, which typically make
stronger than stated assumptions!

I There are variants, including generalization to non-iid
sampling, with additional regularity conditions
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Central limit theorem and the Breit-Wigner
(Cauchy, Lortentz)

I CLT doesn’t apply
to Breit-Wigner
(BW)

I Open histogram is
sampling from BW
with center at 0 and
Γ = 2

I Curve is sampling
distribution

I Yellow is sample
mean for N = 10000
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Sample mean has same distribution as a single sample!
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Parametric and non-parametric statistics

I A distribution may depend on one or more (unknown)
parameters θ; i.e.,

FX (x) = FX (x ; θ)

I Estimation of θ is the domain of “parametric statistics”

I We’ll start with this problem

I Typically we assume a “model” for F and wish to find those
parameter values that best “fit” the available data

I Later we’ll talk about non-parametric methods, which can
often be viewed as “model-independent”
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The exponential family

Let FX (x ; θ) be a parametric cdf depending on paremeter(s) θ, on
a sample space Ω with measure µ. The set of possible distributions
{F : θ ∈ Θ}, where Θ is the parameter space, is called a family of
distributions.
The family {F : θ ∈ Θ} is an exponential family iff, ∀x ∈ Ω:

dFX (x ; θ)

dµ
= h(x) exp

[
q(θ)Tg(x)− r(θ)

]
g maps X to Rk ; q maps θ to Rk

We’ll see that the exponential family distributions have nice
properties.
Example of exponential family distributions: Binomial, Gaussian,
Poisson
However, the BW is not in the exponential family
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Transformations, propagation of errors

Consider continuous pdf f (x), were x = (x1, . . . xN). Suppose we
have a mapping y = h(x) from x to y = (y1, . . . yN). If the y ’s are
linearly independent, we can derive the pdf for y (call it g):

g(y)dN(y) = g [h(x)]

∣∣∣∣∂h

∂x

∣∣∣∣ dN(x)

= f (x)dN(x)

Hence,

g(y) =
f [h−1(y)]∣∣∂h
∂x

∣∣
h−1(y)
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Propagation of errors

Often, content to learn the new covariance matrix, instead of the
whole distribution. If y = (y1, . . . yM) depends linearly on
x = (x1, . . . xN): y = Tx + a, where T is M × N, then

Σy = T ΣxTT

Even if y is not linearly dependent on x we can try a linear
approximation:

Tij =
∂yi
∂xj

∣∣∣∣∣
x∼E(X )

If M = 1 and the xn’s are statistically independent (diagonal
covariance matrix), then we obtain the most commonly-used
propagation of errors formula:

σ2y =
N∑

n=1

(
σxn

∂y

∂xn

∣∣∣
x∼E(X )

)2
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Point Estimation

Point estimation deals with the estimation of parameter values.
Given some parameter(s) θ we wish to determine, we use data X
to form estimator θ̂(X ). Our estimator θ̂(X ) is a RV

I Desirable properties

I Least squares

I Maximum likelihood

I Substitution method
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Point Estimation – Desirable properties

I Robust

I Unbiased

I Consistent

I Efficient

I Sufficient

I Practical
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Point estimation – Desirable properties – Robustness

A robust estimator is an estimator that is insensitive to details of
sampling distribution (i.e., to model errors).
For example, the sample mean is not in general a robust estimator
of location.

I Estimation of center
of a Breit-Wigner
(1000 experiments
with N = 1000)

I Sample mean has
large variance

I Truncated mean
does better (delete
highest and lowest
1%)

I Median is even
better
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Point estimation – Desirable properties – Unbiased

First, a word about error: Our estimator θ̂(X ) is a random variable.
The error in the estimator is the deviation from the true value:

error = θ̂(X )− θ

This isn’t very practical. However, we can imagine forming an
average that we can use. Most common is the mean squared error:

MSE(θ̂; θ) ≡ E [(θ̂(X )− θ)2]

= var[θ̂(X )] +
{

E [θ̂]− θ
}2

The second term is the square of the bias,

b(θ) ≡ E [θ̂]− θ

For a given variance, we minimize the MSE by minimizing the bias.

September 18, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 19



Example of bias

The (maximum likelihood) estimator for the variance, σ2, of X
based on an iid sampling x1, . . . , xN ,

σ̂2 =
1

N

N∑
n=1

[xn −
1

N

N∑
m=1

xm]2

is biased:

b(σ2) = −σ
2

N

Fortunately, this bias is easily eliminated by multiplying our
estimator by N/(N − 1)
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Point estimation – Desirable properties –
Consistency

An estimator is consistent if it is asymptotically unbiased.
The biased estimator in the example on the previous slide is
consistent:

lim
N→∞

(
−σ

2

N

)
= 0
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Point estimation – Desirable properties – Efficiency

An estimator is efficient if it has small variance. Only makes sense
to consider as function of bias (e.g., considering ubiased
estimators)
To discuss efficiency, we introduce:

I The likelihood function, a function of θ for given sampling x

L(θ; x) = f (x ; θ)

I The Fisher information number is

I (θ) ≡ E

{[
∂ log L(θ; X )

∂θ

]2}
This generalizes to the R × R Fisher information matrix in the
case of a multidimensional parameter space:

I (θ) = E

{
∂ log L(θ; X )

∂θ

[
∂ log L(θ; X )

∂θ

]T}
I The quantity S(θ; X ) = ∂θ log L is known as the score function
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The RCF bound

Answers question: How efficient can we be?

Theorem
Rao-Cramér-Frechet (RCF) Assume:

1. The sample space of X is independent of θ.

2. The variance of θ̂ is finite, for any θ.

3. ∂θ
∫∞
−∞ g(X )L(θ; X )dX =

∫∞
−∞ g(X )∂θL(θ; X )dX , where

g(X ) is any statistic of finite variance.

Then the variance, σ2
θ̂

of estimator θ̂ obeys the inequality:

σ2
θ̂
≥ [1 + ∂θb(θ)]2

I (θ)
.

Proof: show that the information number is the variance of the
score and consider the correlation coefficient between score and θ̂
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The RCF bound – Case study (I)

Consider measuring CP violation via B0B̄0 mixing at the Υ(4S).
We measure the time difference, t, between the two B decays in
an Υ→ B0B̄0 event. The sign of t is determined relative to the
decay of a flavor “tag” B, e.g., a B decaying semileptonically. The
pdf for this RV is:

f (t; A) =
1

2
e−|t|(1 + A sin rt),

where t ∈ (−∞,∞), r = ∆m/Γ is a known quantity, and A is the
CP asymmetry parameter of interest. In the early days there was
some contorversy concerning the efficiency of a simple estimation
method:
The simple analysis counts the number of times t < 0, N−, and
the number of times t > 0, N+. The expectation value of the
difference, for a total sample size N = N− + N+, is:

E (N+ − N−) = N
rA

1 + r2
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The RCF bound – Case study (II)

I In the substitution method we replace the expectation value
by the observed difference, and invert to obtain an estimator
for the asymmetry parameter:

Âsubs = d−1
N+ − N−

N
,

where d = r/(1 + r2) is known as the “dilution factor”

I Â is by definition an unbiased estimator for A. The question
is, how efficient is it? We are throwing away detailed time
information – does that matter, assuming our time resolution
isn’t too bad?

I First, what is the variance of Â? For a given N, we may treat
the sampling of N± as a binomial process, giving:

var(Âsubs) = (1− d2A2)/Nd2.
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The RCF bound – Case study (III)

Second, how well can we do, at least in principle, if we do our
best? Let’s use the RCF bound to estimate this (and argue that,
at least asymptotically, we can achieve this bound, e.g., with
maximum likelihood estimation:
For N independent samplings, the RCF bound on the variance of
any unbiased estimator for A is:

var(Â)RCF ≥
1

E

{[
∂
∂A

∑N
i=1 log f (ti ; A)

]2}
≥ 1

NE

[(
sin rt

1+A sin rt

)2] .
Performing the integral gives:

var(Â)RCF =
1

N

{ ∞∑
k=1

A2(k−1) r2k(2k)!

[1 + (2r)2][1 + (4r)2] · · · [1 + (2kr)2]

}−1
.
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The RCF bound – Case study (IV)

I Compare this bound with the variance from the substitution
method (for r = 0.7)

I See that significant gains can be obtained using detailed time
information

[NarskyPorter(2014), Wiley]
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Point estimation – Desirable properties – Sufficiency

A statistic θ̂ is sufficient for θ if the sampling distribution for X
conditioned on θ̂ is independent of θ
That is, θ̂ contains all of the information in the data with any
relevance to θ
If you are not using a sufficient statistic, you may be able to do
better by using some of the additional information

We saw that the median is a robust estimator of location.
However, it is usually far from sufficient.
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Sufficiency – example

Consider sample size N from a N(θ, 1) distribution:

f (x ; θ) =
N∏

n=1

1√
2π

e−
1
2
(xn−θ)2

If N > 1, then θ̂ = x1 is not sufficient for θ, since specifying x1 still
leaves the pdf for x2, . . . , xN depending on θ.
However, the sample mean is sufficient for θ. Let m = 1

N

∑N
n=1 xn

be the sample mean. Then we can write:

N∑
n=1

(xn − θ)2 =
N∑

n=1

(xn −m)2 + N(m − θ)2

Then

f (x |m; θ) =

(
1√
2π

)N−1
exp

[
−1

2

N∑
n=1

(xn −m)2

]
This is independent of θ, hence the sample mean is sufficient for θ
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Point estimation – Desirable properties – Practical

Practical concerns generally arise in interval estimation and density
estimation, but even in point estimation there may be an easy
method that is “good enough”

Example:
Least-squares fitting of track parameters for very large data
samples is best done with specialized code that knows a lot (in
particular, derivatives wrt parameters) about tracks. This can be
orders of magnitude more practical in computing time than just
giving the problem to a general-purpose minimizer (such as
MINUIT).
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Point estimation – Substitution method
Have already encountered the substitution method in example of
the use of the RCF bound. Let us now formalize it:
Consider pdf f (X ; θ) for RV X , depending on unknown parameter
θ. A statistic U(X ) has expectation value:

E (U) =

∫
u(x)f (x ; θ)dx = φU(θ)

Suppose we can invert φU :

θ = φ−1U [E (U)]

We use this to invent a plausible estimator for θ: Assume we have
an iid sampling (x1, . . . , xN) from f . Compute the sample average

mu =
1

N

N∑
n=1

u(xi )

Then form the estimator

θ̂ = φ−1U (mu)
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Substitution method – Comments

I The substitution method enjoys wide use as an easy method
to apply

I As we have seen in the RCF example, it may not be efficient

I We can usually do better with least squares and maximum
likelihood discussed below

The substitution method has been commonly used in obtaining
estimates for parameters of angular distributions (may be called
the “moment method” because we take the emprical moments of
the distribution)
We’ll see again when we discuss methods of density estimation
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Point estimation – Least squares method

Consider a set of RVs (X1, . . . ,XD) with expectation values

E (Xd) = gd(θ), d = 1, . . . ,D

where θ = (θ1, . . . , θR) is an R-dimensional parameter vector.
Suppose the covariance matrix, Σ, for X is known. Given a
sampling X = x , the set of parameter values θ̂ which minimize the
quantity

S = (x − g)
T

Σ−1(x − g)

is called the Least Squares Estimate (LSE) for θ.

Sometimes we substitute an estimator for Σ, more on that later
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Least squares method – Gauss Markov theorem

Theorem
Gauss-Markov Consider the linear model for our observations:

xn =
R∑

r=1

θr srn + εn,

where srn is given, and the error εn is sampled from some
distribution, not necessarily normal. If E (εn) = 0 and var(εn) <∞,
then the LSE for θ is unbiased and of minimum variances among
all linear unbiased estimators.

I Proof left as an exercise

I This property of the LSE is sometimes denoted “BLUE”, for
“Best Linear Unbiased Estimator”
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*Least squares method – Linear problem

Suppose the expectation values gd for xd are D linear functions of
the R parameters θ:

E (x) = g = g0 + Fθ,

where F is a matrix with D rows and R columns. It is convenient
to translate the measurement vector by the constant vector g0:

y = x − g0

Then
S = (y − Fθ)

T
Σ−1(y − Fθ).

We obtain θ̂, the values that minimize S by:

∂S

∂θi

∣∣∣
θ̂

= 0.

Let H ≡ FTΣ−1F ; this is an R × R matrix. Assuming H is
non-singular, we obtain LSE estimator θ̂:

θ̂ = H−1FTΣ−1y
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*Least squares method – Linear problem

As an exercise, show that:
I E (θ̂) = θ, that is, our estimator is unbiased
I var(θ̂) = H−1

I S = (y − F θ̂)
T

Σ−1(y − F θ̂) + (θ̂ − θ)
T

H(θ̂ − θ)

Suppose that our sampling distribution is multivariate normal:

f (y ; θ) = A exp

[
−1

2
(y − Fθ)

T
Σ−1(y − Fθ)

]
,

The pdf is thus of the form:

f (θ̂(y), y ; θ) = A exp

[
−1

2
(y − F θ̂)

T
Σ−1(y − F θ̂)

]
exp

[
−1

2
(θ̂ − θ)

T
H(θ̂ − θ)

]
.

I First part is original pdf, with θ replaced by the estimators θ̂,
I Second part is “correction term”, taking into account that θ̂

may differ from θ.
I Have split the pdf into the probability that we observe θ̂,

given θ, times the probability to observe y given a pdf with
parameters θ̂
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*Least squares method – Linear problem, χ2

Let the quantity in the first exponential be denoted

χ2(y) = (y − F θ̂)
T

Σ−1(y − F θ̂)

This is distributed according to the χ2 distribution with k = D −R
degrees of freedom:

P(χ2; k)dχ2 =
1

Γ(k/2)2k/2
xk/2−1e−χ

2/2dχ2

Useful in testing whether the data are consistent with the model
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*Least squares method – Non-linear problem

In general, we are not lucky enough to have a linear problem. In
this case:

1. See whether it is equivalent to a linear problem

2. If you don’t need to do it often, plug it into a general-purpose
minimizer

3. If you need to do it many times (e.g., track fitting or
kinematic fitting), linearize the problem via a Taylor series
expansion about some starting value for the parameters. The
process is iterated until convergence is (hopefully) attained
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*Non-linear problem – Linearized

The procedure in the third option is as follows: Expand in a Taylor
series giving the expectation values about an initial guess for the
parameter values:

gd(θ) = gd(θ0) +
R∑

r=1

(θr − θ0r )
∂gd
∂θr

∣∣∣
θ0

+ . . .

Try to pick a starting θ0 near the value that minimizes S .
Neglecting higher order terms, we have a problem of the form:

g(θ) = g0 + Fθ,

where
g0 = g(θ0)− Fθ0,

Fij =
∂gi
∂θj

∣∣∣
θ0
.

Solve this linear problem as already discussed. The solution may
not be close enough to the minimum. In this case, re-expand about
the new estimate and iterate. Iterate until convergence is achieved
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*Least squares method – Constraints

Consider performing a kinematic fit to a set of tracks.
I Each track has measured values for the curvature, the tangent

of the dip angle, and the azimuth angle
I The parameters θ are the four-momenta of the particles
I Four-momentum conservation may be imposed by eliminating

some parameters
I Alternatively, impose conservation with constraint equations

and Lagrange multipliers

I There may be additional features, such as
detached vertices.

I Then we have additional relevant
measurements on the trajectories

I We have additional parameters for the
verticies as well

I Have additional constraints, eg, tracks
sharing a common vertex and coplanarity

0 v
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*Least squares method – Constraint formalism

Thus, write:

S = (x − g)
T

Σ−1(x − g) + 2λ
T

c(g , u),

where c are equations of constraint, ck = 0, k = 1, . . . ,K . The
constraint equations could depend not only on g , but also on some
M additional unknowns u. λ is a vector of K Lagrange multipliers.
LSE is obtained by minimizing S with respect to g , u, and the
Lagrange multipliers
If c is not linear in g and u, perform a linear approximation and
iterate. Thus, assume:

c(g , u) = c0 + GTg + UTu,

where G is a K × N matrix:
Gij =

∂cj
∂gi

∣∣∣
g0,u0

and U is a K ×M matrix:
Uij =

∂cj
∂ui

∣∣∣
g0,u0
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*Least squares method – Constraint formalism

Then

S = (x − g)
T

Σ−1(x − g) + 2λT c0 + 2λ
T

G
T

g + 2λ
T

U
T

u.

Setting the derivatives equal to zero with respect to g , u, and λ
yields the equations:

0 = −Σ−1(x − ĝ) + G λ̂

0 = Uλ̂

0 = c0 + G
T

ĝ + U
T

û.

Letting E ≡ ΣG and J ≡ UH−1, we solve these equations and
express our estimators as:

û = −K−1J(c0 + G
T

x)

λ̂ = H−1(c0 + G
T

x + U
T

û)

ĝ = x − E λ̂
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*Least squares method – Checking the model

The χ2 provides a single-number test for goodness of fit (more
later).

Further information is available in the “pulls”:
The “pulls” (or normalized residuals), are a handy way to tell
whether the fit assumptions (e.g., M) are reasonable:

pulld =
xd − gd(θ̂)√

Σdd − (FH−1FT )dd
.

If X is sampled from a normal distribution with mean g(θ) and
covariance Σ, the pulls should be N(0, 1) distributed (Exercise)
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Point estimation – Maximum likelihood method
The maximum likelihood method consists of finding those values of
θ for which the likelihood is maximized:

L(θ̂; x) = max
θ

L(θ; x)
Analytically, solve likelihood equations:

∂L(θ; x)

∂θr

∣∣∣
θ=θ̂

= 0; r = 1, . . . ,R

I Often intractable, and a numerical search is used
I Possible that likelihood equation has no solution within the

domain of θ; then find the θ for which the likelihood achieves
its maximum within its domain

I Value of θ for which the likelihood is maximized is the
maximum likelihood estimator (MLE) for θ. Since θ̂ = θ̂(X ),
the MLE is a RV

I May be multiple solutions to the likelihood equation; called
roots of the likelihood equation (RLE)

I Usually convenient to work with the logarithm of the
likelihood, especially in numerical work
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Point estimation – MLE and LSE

A connection can be made with the least squares method of
parameter estimation, using the logarithm of the likelihood. If f is
a (multivariate) normal distribution, the likelihood function for a
single observation is of the form:

L(θ; x) =
1√

(2π)D |Σ|
exp

{
−1

2
[x − g(θ)]T Σ−1 [x − g(θ)]

}
,

where D is the dimension of X and Σ = cov(X ). Take the
logarithm and drop the constant (independent of θ) terms:

log L(θ; x) = −1

2
[x − g(θ)]T Σ−1 [x − g(θ)]

Thus, −2 log L is precisely the χ2 expression in LSE. This
connection is well-known. However, assumption of normal sampling
is often forgotten. For non-normal distributions, the ML and LS
procedures are distinct methods, yielding different estimators
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Why is MLE good?

The popularity of the maximum likelihood method is based on
several nice properties, as well as reasonably simple computation.
In particular,

1. The maximum likelihood estimator is consistent and
asymptotically (N →∞) efficient

2. If a sufficient statistic exists, the MLE is a function of the
sufficient statistic

3. If an efficient unbiased estimator exists, the maximum
likelihood algorithm will find it

See the textbooks for the fine print and proof

September 18, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 46



Why is MLE not great?

The nice asymptotic properties of the MLE may not hold for small
statistics. For example, with (x1, . . . , xN) an iid sampling from a
N(µ, σ2) distribution, the MLEs for µ and σ2 are

µ̂ = x̄ ≡ 1

N

N∑
n=1

xn

σ̂2 =
1

N

N∑
n=1

(xn − x̄)2.

In the first case, µ̂ is an unbiased estimator for µ for all values of
N > 0. However, σ̂2 has a bias b(σ2) ≡ 〈σ̂2〉 − σ2 = − 1

Nσ
2. For

small N, this bias can be very large. Fortunately, in this case it is
easy to correct for, to obtain the familiar unbiased estimator
N

N−1 σ̂
2.
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MLE example

Sample N times from pdf: 1
θ exp(−X/θ)

The likelihood function is:

L(θ; x) =
N∏

n=1

1

θ
exp(−xn/θ)

It is convenient to work with the negative logarithm,

− lnL(θ; x) = N ln θ +
N∑

n=1

xn/θ

We minimize this with respect to θ:

d(− lnL)

dθ

∣∣∣∣∣
θ=θ̂

= 0

with the result,

θ̂ =
1

N

N∑
n=1

xn
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Numerical Maximum Likelihood Estimation

We may also do this numerically. Example for N = 1000 and
θ = 10:
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The R code for the previous slide

# Example of exponential distribution - generate, then fit

n = 1000 # Size of sample

theta = 10. # True mean

# graphics

par(mfrow = c(1,3)) # For multiple plots

par(ps=28) # Font size

par(lwd=1.5) # Line width

# Generate samplings from exponential

x = -theta*log(runif(n))

sumx = sum(x)

# - log-Likelihood function

lnlik <- function(par) {

n*log(par) + sumx/par

}

# Now do a fit

fit <- optimize(lnlik, interval=c(0,1000))

mltheta <- fit[[1]] # ML estimator value continued. . .
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R code, continued

# Now make some pictures; first plot the likelihood

plot(1:max(x+2)-1,2*lnlik(1:max(x+2)-1),ylab="-2ln(L)",

type="l",xlab="x",main=NULL,col="red")

top = 10000

arrows(mltheta,top,mltheta,8000,col="blue")

text(mltheta-5,top+500,labels=paste("max L at",

format(mltheta,digits=3)),adj=c(0,0))

# Now a histogram of the data with a curve for the fit

hist(x,breaks=1:max(x+2)-1,main=NULL,

ylab="Counts/1 unit",lwd=1.5)

curve((n/mltheta)*exp(-x/mltheta),add=TRUE,col="red")

# Now show it on a log scale

histx <- hist(x,breaks=1:max(x+2)-1,plot=FALSE)

plot(histx[[5]],histx[[2]],log="y",main=NULL,xlab="x",

ylab="Counts/1 unit",pch=19,cex=1.5,col="blue")

curve((n/mltheta)*exp(-x/mltheta),add=TRUE,col="red")
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Hitting a Math Boundary
Technical issue, encountered at low statistics

Consider a ML fit of a set of events to some distribution,
depending on parameters of interest

Example: p(x ; θ) =
θ

2
+

1− θ
A
√

2πσ
e−

x2

2σ2 , x ∈ (−1, 1);

L (θ; {xi , i = 1 . . . ,N}) =
N∏
i=1

p(xi ; θ).

     
 

  
 

  
  

0

1

-1 1

= 0.9

= 1.1

θ

θ

NarskyPorter(2014), Wiley

I Maximum wrt θ may be outside of region where pdf is defined
I The function p(x ; θ) may become negative in some regions of x
I If there are no events in these regions, the likelihood is still

“well-behaved”
I The resulting fit, as a description of the data, will typically

look poor even in region of positive pdf
I Unacceptable (must stay within domain of θ)
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Hitting a Math Boundary (continued)

p(x ; θ) = θ
2 + 1−θ

A
√
2πσ

e−
x2

2σ2 , x ∈ (−1, 1)

Points: Histogrammed “data”.
Red: p(x ; θ) allowed to go negative

in ML fit
Purple: p(x ; θ) constrained
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p
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NarskyPorter(2014), Wiley

I Resolution: Constrain fit to remain within bounds such that
pdf is everywhere legitimate

I n.b., parameters may still be “unphysical”
I This gives fits which “look” like the data
I Applies in interval evaluation also (but check coverage, as

always)
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Next: Interval Estimation
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