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Plan for the Statistics Lectures

I Lecture I (Wednesday, September 18, 11:45-12:30)

1. Important probability concepts
2. Point estimation

I Lecture II (Thursday, September 19, 10:45-12:30)

1. Frequency and Bayes interpretations
2. Interval estimation
3. Systematic uncertainties

I Lecture III (Friday, September 20, 10:45-12:30)

1. Hypothesis tests
2. Resampling methods

I Lecture IV (Saturday, September 21, 10:45-12:30)

1. Density estimation

Lecture boundaries won’t be so crisp!!
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Frequency and Bayes interpretations

I A frequentist makes a statement about the data
I Descriptive
I Make probability statements that are correct in the frequency

sense
[Imagine repeating the experiment many times]

I Sampling distribution is essential for frequentist

I A Bayesian makes a statement about the truth
I Inferential
I Make probability statements about degree-of-belief

[Inherently subjective; different prejudices]
I Uses Bayes theorem for inferences about truth
I Just needs likelihood function

I Objective Bayes approach is different
I Still uses Bayes theorem, but follow a prescription (“objective”)
I Give up degree-of-belief interpretation
I Also not frequentist

I We’ll see how differences arise in interval estimation
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Interval estimation

1. Basics

2. Nuisance parameters

3. Pivotal quantities

4. Inversion of test acceptance region

5. Profile likelihood

6. Asymptotic intervals (supplemental slide)

7. Bootstrap (when we get to resampling)
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Neyman’s definition of Confidence Interval

“If the functions θ` and θu possess the property that, whatever be
the possible value ϑ1 of θ1 and whatever be the values of the
unknown parameters θ2, θ3, . . . , θs , the probability

P{θ` ≤ ϑ1 ≤ θu|ϑ1, θ2, . . . , θs} ≡ α,

then we will say that the functions θ` and θu are the lower and
upper confidence limits of θ1, corresponding to the confidence
coefficient α.”
J. Neyman, “Outline of a Theory of Statistical Estimation Based on the Classical

Theory of Probability”, Phil. Trans. Royal Soc. London 236 (1937) 333-380

I The interval (θ`, θu) is called the Confidence Interval (CI) for
θ1

I We’ll use 1− α instead of α for the confidence coefficient (or
Confidence Level (CL))
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Example: Mean of a Normal Distribution

I Suppose we sample a value x from a N(θ, 1) distribution
I We could form a 68% confidence interval for θ as follows:

I Throw a random number, u, uniform in (0, 1)
I If u < 0.68, quote the interval (−∞,∞)
I Otherwise, quote the null interval

I This is clearly a valid confidence interval, including the exact
value of θ, independent of θ, with a probability (frequency) of
precisely 68%

I However, it is a useless exercise – it has nothing to do with
the measurement!

I To be useful, we must require more from our interval
estimation; we should strive for sufficiency!

I Could also ask for other properties, such as equal distances on
each side of a point estimator or for the smallest interval
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Computing a confidence set

I In general can compute a confidence set in a
multi-dimensional parameter space

I Construct a confidence set as follows:
I For any possible (including perhaps “non-physical”) parameter

vector θ, construct a set of observations x such that θ will be
included in the 1− α confidence region. Call this set Sα(θ)

I Many possible ways to construct such sets. Often, choose to
construct the smallest such set

I In this case, Sα(θ) is the smallest set for which∫
Sα(θ)

f (x ; θ)µ(dS) ≥ 1− α,

where x ∈ Sα(θ) for all x such that f (x ; θ) ≥ minx∈Sα(θ) f (x ; θ)
I That is, the set is constructed by ordering probabilities, and

including x values for which the probabilities are greatest
I Finally, given an observation x , the confidence set Cα(x) at the

1− α confidence level is the set of all θ for which x ∈ Sα(θ)
I By construction, Cα(X ) has a probability of at least 1− α to

include θ. Note: Cα(X ) is a RV.
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Example Continued; Try Again

I Notice that 68% of the time we
sample x from an N(θ, 1)
distribution, the value of x will be
within 1 unit of θ

I Thus, if we quote interval
(x − 1, x + 1), we have a valid
68% confidence interval for θ –
The quoted interval will include θ
with probability (frequency) of
precisely 68%
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I For any given sample, the quoted interval either includes θ or
it doesn’t. Might even know that it doesn’t, e.g., if the
interval is outside some “physical” boundary on allowed values
of θ. This is irrelevant!

I This is precisely the construction of the smallest interval as on
the previous slide. These statistics are also sufficient
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The Mind Set Problem

Neyman goes on to say:

“In spite of the complete simplicity of the above definition, certain
persons have difficulty in following it. These difficulties seem to be
due to what Karl Pearson (1938) used to call routine of thought.
In the present case the routine was established by a century and a
half of continuous work with Bayes’s theorem. . . ”

Physicists have the same difficulty
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Bayesian Intervals
I A Bayesian Interval, at the 1− α confidence level, for a

population parameter θ is an interval which contains a
fraction 1− α of the area under a Bayes’ distribution

I A Bayes’ Distribution is a function of θ [Bayes thm!]:

P(θ; x) = f (x ; θ)P(θ)

/∫ ∞
−∞

f (x ; θ)P(θ)dθ,

where P(θ) is called the prior distribution, and f (x ; θ) is the
pdf evaluated at the observed value x (likelihood)
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Compare frequentist and Bayes intervals – Example

Meaure signal strength in a histogram. Large statistics (bin
contents distributed according to Gaussians to good
approximation). Look at two examples, measuring event yields:
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Frequentist: 90.4± 16.4 −34.8± 16.4
Bayesian: 90.4± 16.4 0+7.1

−0.0
(Uniform prior assumed for Bayes intervals, negative signals
unphysical)
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Two kinds of statistics – comparison of intervals

Eg, Sampling from N(θ, 1)

Black: 68% confidence interval
(frequentist)

Red: 68% Bayesian interval
(uniform prior)

Dashed blue: 68% Bayesian interval
(square root prior)
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Negative peaks are assumed to be unphysical

I Irrelevant for frequentist interval, describing the measurement

I Bayesian prior excludes unphysical regions

I Choice of prior matters (we tend to use ignorance priors)

I Bayes intervals may undercover or overcover in terms of
frequency, but this is irrelevant
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Error estimation for earlier exponential example

In the asymptotic (central limit theorem) limit, a 68% confidence
interval is obtained by finding those points where −2 ln L increases
by 1 unit from the value at the minimum. Example, N = 50,
θ = 10:

Note the asymmetry, θ̂ = 8.8+1.4
−1.1

Exercise: Check coverage.
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θ̂  =  8.81
θ− =  7.68
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For Gaussian sampling, −2 ln L(θ; x) = [x − g(θ)]
T

Σ−1 [x − g(θ)]
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Advice on intervals

I At least describe observation
I Two-sided confidence intervals (frequentist) recommended –

facilitates combining results
I This recommendation is independent of “significance” – Note

that deciding how to quote result based on what the result is
introduces biases

I In low-statistics regime, give raw numbers

I Optionally, provide an interpretation
I E.g., Bayesian upper limit if desired
I State prior used
I Check sensitivity to possible priors
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The problem of nuisance parameters

I Suppose we are interested in some parameters µ ⊂ θ, where
dim(µ) < dim(θ). Let η ⊂ θ stand for the remaining
“nuisance” parameters

I We can use our ordering method, or other methods below, to
construct confidence regions in θ

I But this fails if we want to construct a confidence set in the
proper subspace for parameters µ, since we cannot construct
set Sα(θ) without specifying θ completely

I This is a hard problem in general in frequency statistics, but
we’ll develop several approaches

I It is an easy problem (up to choosing priors) in Bayesian
statistics
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Nuisance parameters in Bayesian statistics

I Write down the full likelihood function in all parameters,
L(µ, η; x) [or, more properly, the posterior]

I Integrate over the nuisance parameters to eliminate them,
yielding the marginal likelihood:

LM(µ; x) =

∫
L(µ, η; x)dη

I In principle, need a prior in nuisance parameters, but typically
taken to be uniform, as here
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Profile likelihood approach to nuisance parameters

I Consider likelihood L(µ, η; x). Define the Profile Likelihood
for µ (suppressing x):

LP(µ) = sup
η

L(µ, η)

I Minuit’s MINOS method uses the profile likelihood idea
I For Gaussian sampling, intervals obtained with the profile

likelihood have correct coverage
I More generally, obtain a lower bound on coverage
I Good asymptotic behavior: Let dim(µ) = k. Consider

likelihood ratio:

λ(µ) =
LP(µ)

maxθ L(θ)

The set
Cα(x) = {µ : −2 lnλ(µ) ≤ cα} ,

where cα is the χ2 corresponding to the 1− α probablity
point of a χ2 with k degrees of freedom, is a 1− α
“asymptotically correct” confidence set
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Confidence Intervals and Nuisance Parameters

Case study for a Common Situation
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Interval Estimation in Poisson Sampling
with Scale Factor and Background Subtraction

The Problem: A “Cut and Count” analysis for a branching fraction
B finds n events.

I The background estimate is b̂ ± σb events.

I The efficiency and parent sample are estimated to give a
scaling factor f̂ ± σf .

How do we determine a (frequency) Confidence Interval for B?
Must know the sampling distribution

I Assume n is sampled from Poisson, µ = 〈n〉 = fB + b

I Assume b̂ is sampled from normal N(b, σ2b)

I Assume f̂ is sampled from normal N(f , σ2f )

[Variant:1/f̂ sampled from a normal]

Note that since we don’t know b, f , we have some missing
information: nuisance parameters
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Example, continued

The likelihood function is:

L(B, b, f ; n, b̂, f̂ ) =
µne−µ

n!

1

2πσbσf
e
− 1

2

(
b̂−b
σb

)2
− 1

2

(
f̂−f
σf

)2

.

µ = 〈n〉 = fB + b

Interested in the branching fraction B. In particular, would like to
summarize data relevant to B, for example, in the form of a
confidence interval, without dependence on the uninteresting
nuisance parameters b and f
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*Example, continued

Variety of Approaches – Dealing With the Nuisance Parameters
Just a few of the things people do, not an endorsement!!!

I Just give n, b̂ ± σb, and f̂ ± σf .
I Provides “complete” summary.
I Should be done anyway.
I But it isn’t a confidence interval for B. . .

I Integrate over N(f̂ , σf ) “pdf” for f , N(b̂, σb) “pdf” for b
I Quasi-Bayesian (uniform prior for f , b (or, eg, for 1/f ))

I Ad hoc: eg, Upper limit – Poisson statistics for n, but with
scale, background shifted by uncertainty

I Easy
I makeshift; extension to two-sided intervals? Not

recommended!

I Fix f and b at ML estimates; include uncertainty in
systematics

I Approximate evaluation with profile likelihood ratio. Let’s
investigate this further
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The profile likelihood method: Case study

I Write down the likelihood function in all parameters

I Find the global maximum

I Search in B parameter for where − ln L increases from
minimum by specified amount (e.g., ∆ = 1/2), re-optimizing
with respect to f and b (ie, use profile likelihood)

Does it work? Investigate the frequency behavior of this algorithm

I For large statistics (normal distribution), we know that for
∆ = 1/2 this produces a 68% confidence interval on B

I How far can we trust it into the small statistics regime?

Remark: Method also applicable to unbinned analysis
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Case study – Coverage
Dependence on b and σb
B = 0, f = 1, σf = 0, ∆ = 1/2
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I Uncertainty in background
and scale helps.

I Can increase ∆ if want to
put a floor on coverage
(probably can do better
though)
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*The profile likelihood method: Case study
Study of coverage

Coverage as function of
∆(− ln L) for:

I f = 1.0

I σf = 0.1

I b = 0.5

I σb = 0.1

Coverage for:
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*What the intervals look like

200 experiments
∆ = 1/2, B = 0, f = 1.0, σf = 0.1, b = 3.0, σb = 0.1.
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Summary of case study

Confidence Intervals with Low Statistics and Nuisance Parameters

I Always give n, b̂ ± σb, and f̂ ± σf
I Justify chosen approach with computation of frequency

I Likelihood method considered here works pretty well (Well
enough?) even for rather low expected counts, for 68%
confidence intervals. Uncertainty in b, f improves coverage

I Note that our case study has two approximations:
I Use of profile likelihood
I Use of Gaussian approximation (∆ = 1/2)

I If σb ≈ b or σf ≈ f , enter a regime not studied here

I Good enough for 68% confidence interval doesn’t mean good
enough for significance test. If statistics is such that Gaussian
intuition is misleading, should ensure this is understood
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Pivotal Quantities

I Pivotal Quantity: Consider a sample X = (X1,X2, . . . ,XN)
from population P, governed by parameters θ. A function
R(X , θ) is called pivotal iff the distribution of R does not
depend on θ

I Generalization of the feature of a location parameter: If µ is a
location parameter for X , then the distribution of R = X − µ
is independent of µ

P(x)

x 0 x-

P(x)

µ µ NarskyPorter(2014), Wiley

If a suitable pivotal quantity can be found, it may be used to
eliminae nuisance parameters
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Confidence Intervals from Pivotal Quantities
Let R(X , θ) be a pivotal quantity, and 1− α be the desired CL.
Find (constants!) c1, c2 such that:

P [c1 ≤ R(X , θ) ≤ c2] ≥ 1− α
[We’ll use equality henceforth, for a continuous distribution]
Now define:

C (X ) ≡ {θ : c1 ≤ R(X , θ) ≤ c2}
C (X ) is a confidence region with 1− α confidence level, since

P[θ ∈ C (X )] = P[c1 ≤ R(X , θ) ≤ c2] = 1− α
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Pivotal Quantities: Example

Consider sampling (iid) X = X1, . . . ,Xn from pdf of form (eg,
Gaussian):

p(x) =
1

σ
f

(
x − µ
σ

)
I Case I: σ known. Then Xn − µ, for any n, is pivotal.

Also, the quantity X̄ − µ is pivotal, where X̄ is the sample
mean, X̄ ≡ 1

N

∑N
n=1 Xn. As a sufficient statistic, X̄ is a better

choice for forming a confidence set for µ

I Case II: Both µ and σ unknown. Let s2 be the sample
variance:

s2 ≡ 1

N

N∑
n=1

(Xn − X̄ )2

I s/σ is a pivotal quantity, and can be used to derive a
confidence set (interval) for σ (since µ does not appear)
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Case II, continued

Another pivotal quantity is:

t(X ) ≡ X̄ − µ
(s/
√
N)

This permits confidence intervals for µ:

{µ : c1 ≤ t(X ) ≤ c2} =
(
X̄ − c2s/

√
N, X̄ − c1s/

√
N
)

at the 1− α CL, where

P [c1 ≤ t(X ) ≤ c2] = 1− α

Remark: t(X ) is often called a Studentized† statistic (though it
isn’t a statistic, since it depends also on unknown µ). In the case
of normal sampling, the distribution of t is Student’s tn−1
†Student is a pseudonym for William Gosset
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Confidence Intervals from Inverting Test Acceptance
Regions

I For any test T (of hypothesis H0 versus H1) we define
statistic (decision rule) T (X ) with values 0 or 1

I T (X ) = 0 corresponds to acceptance of H0, and T (X ) = 1 to
rejection

I The set A = {x : T (x) = 0} is called the acceptance region.
We call α the significance level of the test if

α = P [T (X ) = 1] , H0 is true

That is, the significance level is the probability of rejecting H0

when H0 is true (Type I error).

A
T(X) = 0

T(X) = 1

X
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CIs from inverting test acceptance regions

Let Tθ0 be a test for H0 : θ = θ0 with significance level α and
acceptance region A(θ0). Let, for each x ,

C (x) = {θ : x ∈ A(θ)}

Now, if θ = θ0,

P (X /∈ A(θ0)) = P(Tθ0 = 1) = α

That is, again for θ = θ0,

1− α = P [X ∈ A(θ0)] = P [θ0 ∈ C (X )]

This holds for all θ0, hence, for any θ0 = θ,

P [θ ∈ C (X )] = 1− α

That is, C (X ) is a confidence region for θ, at the 1− α CL
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CIs from Inverting Test Acceptance Regions –
Likelihood ratio test

We often use ordering on the likelihood ratio to determine our
acceptance region. Hence, likelihood ordering may be used to
construct confidence sets
That is, we define the Likelihood Ratio:

λ(θ; x) ≡ L(θ; x)

maxθ′ L(θ′; x)

For any θ = θ0, we build acceptance region according to:

Aα(θ0) = {x : Tθ0(x) = 0} ,

where

Tθ0(x) =

{
0 λ(x ; θ0) > λα(θ0)

1 λ(x ; θ0) < λα(θ0)

and λα(θ0) is determined by requiring, for θ = θ0,

P [λ(X ; θ0) > λα(θ0)] = 1− α
September 19, 2013 Frank Porter, Flecken-Zechlin School . . .Modern Amplitude Analysis Techniques 33



CIs from Inverting Test Acceptance Regions –
Likelihood ratio test

I Supposing sufficiency, rewrite the likelihood ratio in the form:

λ(θ, θ̂) =
L(θ; θ̂)

L(θ̂; θ̂)

I Suppose we observe a result θ̂. We go through our table of
sets Aα(θ) looking for θ̂

I Everytime we find it, we include that value of θ in our
confidence region

I This gives a confidence region for θ at the 1− α confidence
level. That is, the true value of θ will be included in the
interval with probability 1− α
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CIs from Inverting Test Acceptance Regions –
Likelihood ratio

Repeat this procedure as an algorithm:

1. Find θ̂, the value of θ for which the likelihood is maximized

2. For any point θ∗ in parameter space, form the statistic

λ(θ∗, θ̂) ≡ L(θ∗; θ̂)

L(θ̂; θ̂)

3. Evaluate the probability distribution for λ (considering all
possible experimental outcomes), under hypothesis that
θ = θ∗. Using this distribution, determine critical value λα(θ∗)

4. If λ(θ∗, θ̂) ≥ λα(θ∗), then θ∗ is inside the confidence region;
otherwise it is outside

5. Consider all possible θ∗ to construct the entire confidence
region
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CIs from Inverting Test Acceptance Regions –
Likelihood ratio

Analytic evaluation of probability in step (3) is often intractable.
We may use MC to compute this probability. Steps (3)–(5)
become:

3. Simulate many experiments using θ∗ as the value(s) of the
parameter(s), obtaining for each experiment the MLE θ̂MC

4. For each MC experiment, form the statistic:

λMC ≡
L(θ∗; θ̂MC)

L(θ̂MC; θ̂MC)

Critical value λα(θ∗) is the number for which fraction α of
MC experiments have a larger value of λMC

5. If λ(θ∗, θ̂) ≥ λα(θ∗), then θ∗ is inside the confidence region;
otherwise it is outside. In other words, if λ(θ∗, θ̂) is larger
than at least a fraction α of the MC experiments, then θ∗ is
inside the confidence region

6. Procedure repeated for many choices of θ∗ to map out the
confidence region
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Confidence Intervals from Inverting Test Acceptance
Regions

Example in 2 Dimensions: D mixing and DCSD
Using ordering on the likelihood ratio

Two mixing parameters to be determined:

x ′ ≡ ∆m

Γ
cos δ +

∆Γ

2Γ
sin δ,

y ′ ≡ ∆Γ

2Γ
cos δ − ∆m

Γ
sin δ,

where δ is an unknown strong phase (between Cabibbo-favored
and doubly Cabibbo-suppressed amplitudes). Only sensitive to
x ′2, y ′; ML may occur at x ′2 < 0 (“unphysical” region)
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Example in 2 dimensions: D mixing and DCSD

Construction of 2-D confidence
region (95% CL) using likelihood
ratio test

Blue: λData > λMC

Red: λData < λMC
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BABAR
preliminary

95% contour created
by toy MC sets in full
plane.

Converged point
for fit to data.
T est point of toy
Monte Carlo set.

(U. Egede, International Workshop on Frontier Science,

Frascati, October 6-11, 2002)
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Confidence Intervals: “Valid” doesn’t mean “Good”

Example using χ2 statistic

I We do an experiment to measure θ by sampling 10 times from
normal distribution N(θ, 1)

I The sum of the squared-deviations from the mean is

χ2 =
10∑
i=1

(xi − θ)2

I Our estimator, θ̂, for θ, is the value of θ that minimizes this,
namely the sample mean

I The minimum value is:

χ2
min =

10∑
i=1

(xi − θ̂)2

I This statistic is distributed according to a chi-square
distribution with 9 DOF

Wish to find a 68% CI for θ
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χ2 Example – Method 1

I Let ∆χ2(θ) be the difference between the χ2 estimated at θ
and the minimum value:

∆χ2 ≡ χ2 − χ2
min

=
10∑
i=1

[
(xi − θ)2 − (xi − θ̂)2

]
=

10∑
i=1

[
2xi (θ̂ − θ) + θ2 − θ̂2

]
= 2× 10θ̂(θ̂ − θ) + 10θ2 − 10θ̂2

= 10(θ̂ − θ)2

I θ̂ is normally distributed with mean θ and variance 1/10.
Finding the points where ∆χ2 = 1 corresponds to our familiar
method for finding the 68% confidence interval:(

θ̂ − 1/
√

10, θ̂ + 1/
√

10
)
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χ2 Example – Method 2

I Consider the chi-square goodness-of-fit test for:

H0 : θ = θ0,

H1 : θ 6= θ0

I At the 68% significance level, we accept H0 if

χ2(θ0) < χ2
crit

where
F (χ2

crit, 10) ≡ P(χ2 < χ2
crit, 10) = 68%

(Note: 10 DOF, since θ0 is specified)

I If χ2
crit > χ2

min, we have confidence interval

θ̂ ±
√(

χ2
crit − χ2

min

)
/10

Otherwise, we have a null confidence interval

I In present example, χ2
crit = 11.54
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χ2 Example – Comparison of Methods
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NarskyPorter(2014), Wiley Blue: Method 1 (∆χ2)
Red: Method 2 (χ2 test)

Astrophysics example: Mueller & Madejski, Ap. J. 700 (2009) 243
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*Conditional Likelihood

Consider likelihood L(µ, η), with interesting paramer(s) µ and
nuisance parameter(s) η. Suppose Tη(X ) is a sufficient statistic for
η for any given µ. Then conditional distribution f (X |Tη) does not
depend on η. The likelihood function corresponding to this
conditional distribution is called the Conditional Likelihood

I Estimates (e.g., MLE for µ) based on conditional likelihood
may be different than for those based on full likelihood

I This eliminates the nuisance parameter problem, if it can be
done without too high a price

I We’ll see an example later of the use of conditional likelihoods
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Confidence intervals - Recommendations

I Use frequency statistics for summarizing information
I Goal is to decribe what we observe, with properties:

I Simple, coherent interpretation
I Facilitate combination with other results
I Can be counter-productive to impose “physical” constraints.

No reason to obscure observation of an “unlikely” result.
Imposing constraint may complicate combination.

I Generally, recommendation is to quote two-sided 68%
confidence intervals as primary result

I Check for frequency validity (coverage)
I If you want to provide an interpretation, domain is Bayesian

statistics
I Upper limits have this flavor – they are treated as implying

“how big θ could be”
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Comparison:
Feldman-Cousins, “Usual”, and “Bayes” Intervals

Assume our experiment is a sampling from an N(θ, 1) distribution.
Assume we have “physical” knowledge that θ > 1.

Comparison of some 68% “Confidence” Intervals

x “usual” interval Feldman-Cousins Bayes upper limit
(x − 1σ, x + 1σ) with uniform prior

-2 (-3,-1) (1,1.04) 1.33
-1 (-2,0) (1,1.07) 1.44
0 (-1, 1) (1, 1.27) 1.64
1 (0,2) (1, 2) 1.99
2 (1,3) (1.24,3) 2.6
3 (2,4) (2,4) 3.5

[Feldman-Cousins is inversion of a test acceptance region, using
ordering on likelihood ratio, with additional feature of stopping at
physical boundary.]
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Systematic uncertainties

I An error is the difference between a measured value and a
true value

I It is a RV

I An uncertainty is a source of error, or a characterization of its
expected size

I Error may arise from
I Random fluctuations
I Bias (incorrect model assumptions, including “mis-calibration”;

biased procedure)
I Mistakes (philosophical question: are mistakes RVs?), eg,

mis-reading a scale

I Distinction between mistake and bias: A bias reliably repeats
with repeated measurements; a mistake shouldn’t

I Bias is systematic

See also Barlow, arXiv:hep-ex/0207026v1 (2002)
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Systematic uncertainties

B(e+e− → Nobel prize) = 10± 1± 5

I They may be important!
I Maybe the ±5 is a systematic uncertainty in the estimate of

the background expectation. A “10σ” statistical significance is
really only a “2σ” effect

I They may be not quite so important
I Maybe the ±5 is a systematic uncertainty on the efficiency,

entering as a multiplicative factor. It makes no difference to
the significance whether the result is 10± 1 or 5± 0.5
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Systematic uncertainties – estimation

I If possible, correct for biases
I But maybe don’t know sign or magnitude

I Happens when source is a (nuisance) parameter determined in
some other measurement

I That is, bias may be another RV
I Eg, branching fractions may be measured relative to some

“standard” decay; then absolute BFs have a systematic
uncertainty

I Then we quote a systematic uncertainty

I Should be quoted separately, since may be possible to correct
for later (eg, when standard BF is better measured)
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Systematic uncertainties – not

I Not everything is a systematic uncertainty
I If it were,we would have endless sources of uncertainty

I We check many possibilities for mistakes or unanticipated
problems

I If find a problem, fix it, or discard result
I Otherwise, do nothing
I Results are quoted in context of “no mistakes”
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Systematic uncertainties example: D mixing and
DCSD revisited

I Want simple procedure

I Willing to accept approximation

I Scale statistical contour uniformly
along ray from best-fit value.

Factor is
√

1 +
∑

m2
i , where mi is

estimated systematic uncertainty i
measured in units of statistical
uncertainty. Estimate obtained by
determining effect of the
systematic uncertainty on x̂ ′2, ŷ ′
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PRL 91 (2003) 171801

I Method conservative in sense that scaling for a given
systematic in one direction is applied uniformly in all
directions. On the other hand, a linear approximation is being
made
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Next: Hypothesis tests; Resampling
methods
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Supplemental Material
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Asymptotic Inference

I When can’t (or won’t) do exact solution, can base
approximate treatment on asymptotic crieria.
Let X = (X1, ...,Xn) be a sample from population P ∈ P. Let
θ be a parameter vector for P, and let C (X ) be a confidence
set for θ. If lim infn P [θ ∈ C (X )] ≥ α for any P ∈ P, then α
is called an Asymptotic Significance Level of C (X )
If limn→∞ P [θ ∈ C (X )] = α for any P ∈ P, then C (X ) is an
α Asymptotically Correct confidence set.

I Many possible approaches, for example, can look for “
Asymptotically Pivotal” quantities; or invert acceptance
regions of “ Asymptotic Tests”.
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