Photoproduction of ω Mesons off the Free Proton at the CBELSA/TAPS Experiment

Andrew Wilson

Post Doctoral Researcher, Universtät Bonn, Bonn, Germany For the CBELSA/TAPS Collaboration

23 September 2013 School on Concepts of Modern Amplitude Analysis Techniques

Rheinische Friedrich-Wilhelms Universität Bonn

Andrew Wilson

Photoproduction of ω Mesons

Where are the "Missing" Baryon Resonances?

Constituent Quark Model Prediction for Isospin = 1/2, Strangeness = 0 Baryons

Constituent Quarks+ Confinement Potential+residual interaction

- Seem to match low mass states.
- Where are the high mass states?

Models

All models predict high mass states.

Experimentally

haven't looked in the right places

U. Loring, B. C. Metsch and H. R. Petry, Eur. Phys. J. A 10 (2001) 395.

Motivation for Studying ω Photoproduction

Find Missing Baryon Resonances

S. Capstick and W. Roberts, "Quasi two-body decays of nonstrange baryons," Phys.Rev., vol. D49, pp. 4570 - 4586, 1994.

Predicts 32 Baryon Resonances with significant couplings to $p\omega$ in the sensitivity range for this experiment (below 2.3 GeV/ c^2 in mass)

PDG \rightarrow 14 *N*^{*} Baryon Resonances with 3 or 4 star assignments below 2.3 GeV/*c*² in mass

Why CBELSA/TAPS?

- No previous measurement measures the full kinematic range.
- Needed for separating dominant *t*-channel from resonance contributions

CBELSA/TAPS Experiment at ELSA (Bonn)

 $\gamma p
ightarrow p \omega$ Measurements (2002-2003 Setup)

- Differential Cross Sections ($E_{\gamma} < 2.5 \text{ GeV}$)
- Unpolarized Spin Density Matrix Elements ($E_{\gamma} < 2.5 \text{ GeV}$)

Beam: Unpolarized or linearly polarized tagged photons **Target:** Liquid hydrogen

- Excellent photon energy and position reconstruction
- the presence of charged particles by scintillators

Unpolarized Measurement Reaction Selection

Decay channel selected for: $\gamma p \rightarrow p\omega \rightarrow p\pi^0 \gamma \rightarrow p\gamma\gamma\gamma$ (Branching Ratios : $\omega \rightarrow \pi^0\gamma = 8.9\%$, $\pi^0 \rightarrow \gamma\gamma = 98\%$) Data recorded: October - November 2002 Selected events with:

3 uncharged particles & charged particles < 2

Kinematic Cuts

- Timing Cut causality
- Coplanarity Cut momentum
 conservation
 - Trigger Cut potential simulation issue
 - Kinematic Fitting Cut 0.5% CL cut on a $\gamma p \rightarrow p_{missing} \pi^0 \gamma$ Fit
 - Opening Angle Cut

FINALLY!... Invariant Mass Distributions

Q-factor Background Subtraction

For each event left in the analysis.

- Find the nearest neighbors in the final state's kinematic phase space.
- Fit the invariant mass spectrum of a particle in the desired final state. (background & signal functions)
- Define a Q-factor from the fit. (Probability the event is the desired final state)
- Weight each event with the Q-factor.

$$Q = \frac{s}{s+b}$$

M. Williams, M. Bellis, and C. Meyer, JINST, vol. 4, p. P10003, 2009.

Q-factor Fits

$\gamma p \rightarrow p \omega$ Experimental Data Fits

Total generated $p\omega$ events = 27,000,000

$\gamma p \rightarrow p \omega$ Differential Cross Sections

Labeled with incoming photon energy.

$\gamma p \rightarrow p \omega$ Differential Cross Sections

Unpolarized Spin Density Matrix Elements

 $\rho_{ij} \sim M_i M_i^*$

i and *j* is the spin polarization (ω rest frame) of the ω (-1,0,1) θ_d and ϕ_d angles of the γ in $\omega \to \pi^0 \gamma$ in ω rest frame.

Extraction Method

- Angular Distributions : $6 \cos \theta_d$ bins and $8 \phi_d$ bins
- Angular Distribution Fit Functions taken from:
 - Q. Zhao, J. Al-Khalili, and P. Cole, Phys.Rev., vol. C71, p. 054004, 2005. $W^{0}(\theta_{d}, \phi_{d}, \rho^{0}) = \frac{3}{8\pi} (\sin^{2}\theta_{d}\rho_{00}^{0} + (1 + \cos^{2}\theta_{d})\rho_{11}^{0} + \sin^{2}\theta_{d}\cos 2\phi_{d}\rho_{1-1}^{0} + \sqrt{2}\sin 2\theta_{d}\cos \phi_{d}Re\rho_{10}^{0})$

Reference Systems

- Helicity system *z*-axis $|| \vec{q}_{\omega}^{c.m.}$
- Adair system *z*-axis $|| \vec{k}_{c.m.}$
- Gottfreid-Jackson system z-axis || $\vec{k}_{\omega \ frame}$.

Unpolarized $\gamma p \rightarrow p \omega$ Spin Density Matrix Elements

Labeled with SDME and $\cos \theta_{c.m.}^{\omega}$

 Same Data used in differential cross sections

First $\gamma p \rightarrow p\omega$ Unpolarized SDMEs measured over the full kinematic range

Helicity System Gottfried-Jackson system Adair system

Future

Improvements to be made

- Effects of binning in low statistics data are significant
- Develop an un-binned, unbiased fitting method to extract Spin-density Matrix Elements.
- Develop an interpretation of $\gamma p \rightarrow p \pi^0 \omega$ data.
 - Include ω decay.
 - Take into account all dimensionality.

Future Plans

- Publish data soon (under Collaboration Review)
- Measure <u>Polarized</u> Spin-density Matrix Elements for ω photoproduction.