D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary

$D^0 - \overline{D^0}$ Mixing in the Decay $D^0 \to K_s \pi^+ \pi^-$ (at PANDA)

Andreas Pitka

II. Physikalisches Institut Gießen

21. September 2013

D ⁰ -Mixing in General 00	Strategy of Measurement	Fitting Procedure	Summary 00
Outlines			

2 Strategy of Measurement

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
●○	0000		00
D ⁰ -Mixing in Gen	eral		

Figure: Short distance (left) and long distance (right) contributions to $D^0 - \overline{D}^0$ mixing in the SM.

- There are four known mesons which mix with their anti-particles (K⁰, D⁰, B⁰, B⁰_s).
- The $D^0 \overline{D^0}$ -System is the only one with d-type quarks in the intermediate loops.
- Particles not included in the SM can enlarge the short range contribution

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
⊙●	0000		00
Formalism			

Free Schrödinger equation:

$$irac{d}{dt}\left(egin{array}{c} D^0(t) \ ar D^0(t) \end{array}
ight) = \left(\hat M - rac{i}{2}\hat \Gamma
ight) \left(egin{array}{c} D^0(t) \ ar D^0(t) \end{array}
ight)$$

Eigenstates are flavor superpositions:

$$\mid D_{1,2}
angle = p \mid D^0
angle \mp q \mid ar{D}^0
angle$$
 , $p^2 + q^2 = 1$.

Proper time evolution of eigenstates:

$$\mid D^{0}(t)
angle = rac{1}{2
ho}\left[
ho\left(e_{1}(t)+e_{2}(t)
ight)\mid D^{0}
ight
angle + q\left(e_{2}(t)-e_{1}(t)
ight)\midar{D}^{0}
ight
angle
ight]$$

with

$$\mid D_{1,2}(t)
angle = e_{1,2}(t) \mid D_{1,2}
angle = e^{-i(m_{1,2} - rac{i}{2} \Gamma_{1,2})t} \mid D_{1,2}
angle$$

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
	0000		

Strategy of Measurement

 K^+ Decay rate to final state $K_s \pi^+ \pi^ \bar{D}^0$ $\left|\left\langle K_{s}\pi^{+}\pi^{-}\mid\mathcal{H}\mid D^{0}(t)\right\rangle\right|^{2}=\frac{1}{2}e^{-\Gamma|t|}$ π $\psi(3770)$ D^{0} $\left[\cos(x\Gamma\Delta t)\left(|\mathcal{A}_{f}|^{2}-\left|\frac{q}{p}\right|^{2}\left|\bar{\mathcal{A}}_{f}\right|^{2}\right)\right]$ $\Delta t \approx \tau_{D^0} - \tau_{\bar{D}^0}$ $+\cosh(y\Gamma\Delta t)\left(\left|\mathcal{A}_{f}\right|^{2}+\left|\frac{q}{p}\right|^{2}\left|\bar{\mathcal{A}}_{f}\right|^{2}\right)$ $\mathcal{A}_{f} = \langle K_{s} \pi^{+} \pi^{-} \mid \mathcal{H} \mid D^{0} \rangle$ $+2\sin(x\Gamma\Delta t)\cdot\operatorname{Re}(\frac{q}{n}\bar{\mathcal{A}}_{f}\otimes\mathcal{A}_{f}^{*})$ $\bar{\mathcal{A}}_{f} = \langle K_{s} \pi^{+} \pi^{-} \mid \mathcal{H} \mid \bar{D^{0}} \rangle$ $-2\sinh(y\Gamma\Delta t)\cdot \operatorname{Im}(\frac{q}{p}\bar{\mathcal{A}}_{f}\otimes\mathcal{A}_{f}^{*})$ $x = \frac{m_1 - m_2}{\Gamma}$, $y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$

Normalized mass difference x arises from short range part
Normalized lifetime difference y arises from long range part

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
00	0●00		00
Three body Am	litude $\mathcal{A}_{\mathcal{F}}$		

Isobar approach

- coherent sum of quasi-two-body amplitudes
- $D^0 \to K^*(892)^- \pi^+ \to K_s \pi^+ \pi^-$

•
$$D^0 \rightarrow \rho K_s \rightarrow K_s \pi^+ \pi^-$$

•
$$D^0 \to K_2(1680)^+ \pi^- \to K_s \pi^+ \pi^-$$

$$2 \longleftrightarrow 3$$

• • • •

$\mathcal{A}_f = \langle K_s \pi^+ \pi^- \mid \mathcal{H} \mid D^0 \rangle$

$$\mathcal{A}_{f} = \sum_{r} c_{r} \exp(i\theta_{r}) \mathcal{A}_{r}(m^{2}), \quad r = \mathcal{K}^{*}(892)^{-}, \ \rho, \ \mathcal{K}_{2}(1680)^{+}\rho, \cdots$$

 \mathcal{A}_r : Breit-Wigner function in a simple case

- Simplified world with three inermediate resonances: $K^*(892)^-$ (Cabibbo favored), $K^*(892)^+$ (Cabibbo suppressed) and ρ
- Enhance mixing frequency and neglect lifetime difference

•
$$x = 1000 \cdot x_{phys}$$

- Simplified world with three inermediate resonances: $K^*(892)^-$ (Cabibbo favored), $K^*(892)^+$ (Cabibbo suppressed) and ρ
- Enhance mixing frequency and neglect lifetime difference

•
$$x = 1000 \cdot x_{phys}$$

- Simplified world with three inermediate resonances: $K^*(892)^-$ (Cabibbo favored), $K^*(892)^+$ (Cabibbo suppressed) and ρ
- Enhance mixing frequency and neglect lifetime difference

•
$$x = 1000 \cdot x_{phys}$$

- Simplified world with three inermediate resonances: $K^*(892)^-$ (Cabibbo favored), $K^*(892)^+$ (Cabibbo suppressed) and ρ
- Enhance mixing frequency and neglect lifetime difference

•
$$x = 1000 \cdot x_{phys}$$

- Simplified world with three inermediate resonances: $K^*(892)^-$ (Cabibbo favored), $K^*(892)^+$ (Cabibbo suppressed) and ρ
- Enhance mixing frequency and neglect lifetime difference

•
$$x = 1000 \cdot x_{phys}$$

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
00	000●	000	00

Used iviodel

	.DC			_
Resonance	Jre	$M \left[MeV / c^2 \right]$	$I [MeV/c^2]$	lype
K*(892) ⁻	1-	893.6	46.7	RBW
$K^{*}(892)^{+}$	1-	893.6	46.7	RBW
ρ	1	775.8	146.4	GS
ω	1	782.59	8.49	RBW
$f_2(1270)$	2++	1275.4	185.1	RBW
$K_0^*(1430)^-$	0+	1463.1	232.3	LASS
$K_0^*(1430)^+$	0+	1463.1	232.3	LASS
$K_{2}^{*}(1430)^{-}$	2+	1425.6	98.5	RBW
$K_{2}^{*}(1430)^{+}$	2+	1425.6	98.5	RBW
$K^{*}(1680)^{-}$	1-	1677.0	205.0	RBW
$\pi^+\pi^-$ S-Wave	0++			K-Matrix

RBW: Relativistic Breit-Wigner

GS: Gounaris-Sakurai

LASS: RBW + non resonant effective range potential

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
00	0000	●00	00
Fitting Pseudodat	a		

- Adjusted the EvtGen Model EvtD0mixDalitz $(D^{*+} \rightarrow D^0 \pi^+)$ with mixing) to the the case $\psi(3770) \rightarrow D^0 \overline{D^0}$
- Used Monte Carlo Events: 3 · 10⁵

Minimize negative Logarithm of Likelihood (unbinned)

$$-\ln \mathcal{L} = \mathit{N}_{\mathsf{Data}} \sum_{j=1}^{\mathit{N}_{\mathsf{PHSP}}} f(x_j, \mathbf{a}) - \sum_{i=1}^{\mathit{N}_{\mathsf{Data}}} f(x_i, \mathbf{a})$$

- In first steps Evolutionary fit algorithm to avoid local minima
- In the end Minuit2 with Migrad (Gradient based algorithm with variable metric)
- Use Message Passing Interface (MPI) to split the calculation on different machines

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
00	0000	0●0	00
Result of the Fit ((qualitative)		

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
00	0000	00●	00
Result of the Fit ((quantitative)		

Fit Fractions [%]				
Resonance	Truth	Fit		
K*(892) ⁻	48.02	33.39		
$K^{*}(892)^{+}$	0.40	0.28		
ho	17.43	11.75		
ω	0.79	0.50		
$f_2(1270)$	0.46	0.30		
$K_0^*(1430)^-$	20.32	40.60		
$K_0^*(1430)^+$	0.03	4.26		
$K_{2}^{*}(1430)^{-}$	1.84	1.28		
$K_{2}^{*}(1430)^{+}$	0.008	0.006		
$K^{*}(1680)^{-}$	0.61	0.55		
$\pi^+\pi^-$ S-Wave	10.10	7.08		

Fit Fractions

$$FF_{r} = \frac{\int |\mathcal{A}_{r}|^{2} dm_{AB}^{2} dm_{AC}^{2}}{\int |\sum_{i} \mathcal{A}_{i}|^{2} dm_{AB}^{2} dm_{AC}^{2}}$$

Binned χ^2 (integrating time)

$$\chi^2/{
m dof} = 4429.72/4211 = 1.05$$

-		Truth [%]	Fit [%]
-	Х	0.63	0.685 ± 0.204
	У	0.75	0.888 ± 0.166

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
00	0000		●○
Summary			

- A EvtGen decay model was adjusted for the inestigated channel
- An unbinned Likelihood fitter was written to extract the D⁰ mixing parameters using EvtGen amplitudes

Already in progress

- Detector based simulation with Pandaroot (→ PANDA Meeting Dec)
 - Acceptance, efficiency, purity...
 - Resolution
 - Background events
- Unbinned goodness of fit tests (already working for toy models)
 - Mixed sample method
 - Energy test
- Examine if CP-Violation can be extracted (so far not successfull)

Strategy of Measurement

Fitting Procedure

Thanks for listening!!! :-)

Figure: M. Gell-Mann (left) and A. Pais (right) proposed that the physical neutral Kaons are admixtures of the flavor eigenstates in 1954

D ⁰ -Mixing in General	Strategy of Measurement	Fitting Procedure	Summary
00	0000	000	00
Backup			

Backup

15 / 13