The Search for an Exotic Meson in the $\gamma p \rightarrow \Delta^{++} \eta \pi^-$ Reaction

Diane Schott

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Previous Results: $\pi_1(1400)$

- At Brookhaven, E852 collaboration:
 - π⁻ p →π⁻ η p (18.3 GeV)
 - M = 1370 ±16 MeV
 - Γ = 385 ± 40 MeV
- Published a mass and width of the $\pi_1(1400)$.
- This was followed by the ηπ⁰ analysis but no consistent set of amplitude parameters were found.
 - *Phys. Rev. Lett. 79:9 (1997)

Previous Results: $\pi_1(1400)$

• This was followed by the $\eta\pi^0$ analysis but no consistent set of amplitude parameters

Photoproduction

- Why look for exotics with photoproduction?
- Expect the production strength of gluonic hybrids to be favorable. $\pi_1/a_2 \sim 0.5$

- Close et al. Phys. Rev. D52:1706 (1995)
- Afanasev et al. Phys. Rev. D57:6771 (1998)
- Szczepaniak et al. Phys. Lett B516:72 (2001)

g12

- The analysis goal is to select Δ⁺⁺ ηπ⁻ events for PWA of ηπ⁻.
 - The Δ^{++} will restrict the possible states of $X^- \rightarrow \eta \pi^-$.
 - Isospin:
 - $I_p = 1/2$
 - $I_{\Delta + +} = 3/2$
 - For isospin conservation, the exchange particle needs I = 1.

Through G-parity conservation, the exchange particle is constrained to I^G = 1⁻

Partial Wave Analysis

- So how do we differentiate noise, regular mesons and exotic mesons?
- The intensity is quantified as:

•
$$I(\tau) = \sum_{\epsilon} \sum_{\alpha,\alpha'} \rho_{\gamma} \epsilon V_{\alpha} \epsilon A_{\alpha} \epsilon V_{\alpha'} \epsilon A_{\alpha'}$$

- α is the set {J, P, |M|, L, I, λ, S} used to describe the resonance X.
- Fit to find the maximum likelihood of the wave contributions.

Final Data

$M(p\pi^{+}) < 1.3 \text{ GeV}$

PWA: Mass Independent Fit

PWA: Mass Independent Fit

- The strongest contribution is from the D wave.
- The P waves shows no bump and is roughly 1/5 of the D wave.

• The S wave shows a broad background with 1/2 the intensity of the D wave.

Acceptance and Fit Quality

- for simulation: generated $\Delta + + X^- \rightarrow (p \pi^+)$ ($\eta \pi^-$)
 - where the (p π^+) and ($\eta \pi^-$) mass spectra is generated to match the data
 - use momentum transfer ~3 GeV² from t-slope of a₂
- weighted events for the PWA solution and detector acceptance

PWA fitter test

- generated pure waves and process with the standard CLAS simulation package.
- followed the same fitting procedure as the PWA of real data

erated wave	fit wave	%
D+, D-	p-, p+	0.11
	S	0.004
	d+, d-	99.89
P+, P-	p-, p+	95.62
	S	4.29
	d+, d-	0.09
S-	p-, p+	0.8
	S	98.83
	d+, d-	0.36

- Used relativistic BW amplitudes to fit the partial wave intensity and phase together using a χ^2 fit.
 - Includes error matrix calculated from PWA.

 a_2

- mass: 1.32 ± 0.01 GeV
- width: 0.14 ± 0.01 GeV
- PDG values:
 - mass: 1.318 ± 0.0006 GeV
 - width: 0.107 ± 0.005 GeV

2

- Included π_1 with a_2
 - a₂ mass: 1.343 ± 0.003 GeV
 - a₂ width: 0.174 ± 0.003 GeV
 - π_1 mass: 1.39 ± 0.23 GeV
 - π₁ width: 0.58 ± 0.05 GeV

		0	
		3	F
		2	L
	(p	1	_
	(ra	0	
	φ.	_1	
	<	-	
	-	-2	F
	-	$^{-3}_{1}$	E 0
	25	nî.	
\sim	20	nn.	
sit	15	00	
en	10		F
Int	10	00	F
6	5	00	
war		0	F
Ь	-5	00	F
	-10	Q0	Ľ
	00	1.	U.
H	80	00	
ai ty	- 60	nn.	Ľ
ens	50	00	L
nt	40	ŎŎ.	L
еI	-30	00	╞
/av	-20	00	-
1	10	00	E
Н	_10	nn.	
	10	~1.	0

 a_2

- included π_1 with a_2
 - a_2 mass: 1.343 ± 0.003 GeV
 - a_2 width: 0.174 ± 0.003 GeV
 - π₁ mass: 1.39 ± 0.23 GeV
 - π₁ width: 0.58 ± 0.05 GeV
- Results of the fit varied greatly. The best fit for the π_1 resulted in large errors for the mass and a width broader than the pion production value.

- No exotic was concluded to be seen in the final fit.
- The baryon vertex constrained the wave set as expected.
- This is the first look into ηπ⁻ using photoproduction!

Summary

- The PWA of the M($\eta\pi^{-}$) resulted in:
 - the wave set to be dominated by the 2^{++} partial wave coinciding with the a_2
 - the 1⁻⁺ partial wave intensity shows no structure
 - the phase difference between 1⁻⁺ and 2⁺⁺ shows a shift
- The fits of the PWA intensity and phase difference resulted in the fit of the a_2 but not of the π_1 .