Dalitz plot analysis of $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$ decay

Siddhesh Sawant (for WASA-at-COSY collaboration)

Indian Institute of Technology Bombay, Mumbai
IKP, Forschungszentrum Jülich

September 20, 2013

Outline

Introduction
Why $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$?

Experimental setup

Analysis
Cut based analysis
Kinematic fitting

Summary/outlook
ω meson $\left(J^{P}=1^{-}\right)$

Vector Meson Dominance model

$$
\begin{gathered}
\text { Hadronic } \gamma=\gamma+(\rho, \omega, \phi) \\
(\rho, \omega, \phi) \longleftrightarrow
\end{gathered}
$$

$\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$

- Vector Meson Dominance
- Calculations of contact terms

[S. Leupold, Eur. Phys. J. A 39, 205-212 (2009)]
- $\pi \pi$ final state interaction [F. Niecknig, Eur. Phys.J. C 72, 2014 (2012)]

Dalitz plot

- Illustrates dynamics of three body decay
- Provides tool to study the decay mechanism

Previous experiments:
$\sim 4600 \omega \rightarrow 3 \pi$ events
[M. L. Stevenson, Phys Rev. 125, 687 (1962)]

WASA-at-COSY:

Reaction	$\mathrm{T}_{p}(\mathrm{GeV})$	Expected $\omega \rightarrow 3 \pi$ events
$p+p \rightarrow p+p+\omega$	$2.06,2.54$	$\sim 10^{4}$
$p+d \rightarrow{ }^{3} \mathrm{He}+\omega$	$1.45,1.50$	7.2×10^{4}

Experimental setup (WASA-at-COSY)

合 Situated at FZ-Jülich, Germany

COSY

- Cooler synchrotron and storage ring
- Proton and deuteron beam, momentum: 0.3 to $3.7 \mathrm{GeV} / \mathrm{c}$

WASA

- Pellet target system
- Luminosity: $10^{31}-10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- 4π detector
- To study production and decays of
 light mesons, like π, η, ω

WASA detector

Central detector

decay product of mesons, like $\gamma, \pi^{ \pm}$and $e^{ \pm}$

Forward detector scattered particles, like $p,{ }^{3} \mathrm{He}$

WASA detector

Forward detector

p identification

- Detects all final state particles

$p_{\text {beam }} p_{\text {target }} \rightarrow p p \pi^{+} \pi^{-} \pi^{0}$

Basic conditions Particle identification

Further condition

$M_{\text {Missing }}^{2}$ (beam, target, $\left.p, p, \pi^{+}, \pi^{-}\right) \quad \longrightarrow$

A look at ω signal in data

$$
p_{\text {beam }} p_{\text {target }} \rightarrow p p X
$$

$$
M_{\text {Missing }}(\text { beam, target }, l)=\left[\left(E_{\text {beam }}+E_{\text {target }}-E_{l}\right)^{2}-\left(\vec{p}_{\text {beam }}+\vec{p}_{\text {target }}-\vec{p}_{l}\right)^{2}\right]^{\frac{1}{2}}
$$

Kinematic fitting

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).

Physical process: $p p \rightarrow p p \pi^{+} \pi^{-} \gamma \gamma$ and $\pi^{0} \rightarrow \gamma \gamma$
Measurements: $\quad\left(E_{k i n}, \theta, \phi\right)$ of $p, \pi^{ \pm}, \gamma$

- Clear η and ω signals

Kinematic fitting

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).
Physical process: $p p \rightarrow p p \pi^{+} \pi^{-} \gamma \gamma$ and $\pi^{0} \rightarrow \gamma \gamma$
Measurements: $\quad\left(E_{k i n}, \theta, \phi\right)$ of $p, \pi^{ \pm}, \gamma$

- Clear η and ω signals
- $N(\omega) / N(\eta)$ consistent in data and simulation

Part of available pilot data

A first look at the Dalitz plot distribution

$$
X=\sqrt{3} \frac{T_{\pi^{+}}-T_{\pi^{-}}}{Q_{\omega}}, \quad Y=3 \frac{T_{\pi^{0}}}{Q_{\omega}}-1
$$

where, $T_{\pi^{+}}, T_{\pi^{-}}, T_{\pi^{0}}$: kinetic energy of π^{+}, π^{-}and π^{0}
$Q_{\omega}=T_{\pi^{+}}+T_{\pi^{-}}+T_{\pi^{0}}$

Bin-wise background subtraction

Dalitz plot
Not efficiency corrected

Part of available pilot data

Summary/outlook

- Aim: To perform the Dalitz plot analysis of $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- WASA-at-COSY: ω produced in $p p$ and $p d$ reactions
- Obtained the non-efficiency corrected Dalitz plot ($p p$ data $@ T_{p}=2.06 \mathrm{GeV}$)

Next,

- Obtain the efficiency corrected Dalitz plot
- Analyze other data set (i.e. $p p \mathrm{CT}_{p}=2.54 \mathrm{GeV}$)
- Combine all available data sets \longrightarrow Dalitz plot
- Calulate the Dalitz plot parameter

Back up

Experimental setup: (WASA-at-COSY)

WASA detector :

Central detector decay product of mesons, like $\gamma, \pi^{ \pm}$and $e^{ \pm}$

PID

Proton

$$
\pi^{ \pm} \pi^{0}
$$

Kinematic fitting

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).
Physical process: $p p \rightarrow p p \pi^{+} \pi^{-} \gamma \gamma$ and $\pi^{0} \rightarrow \gamma \gamma$ Measurements: $\left(E_{k i n}, \theta, \phi\right)$ and $\left(\Delta E_{k i n}, \Delta \theta, \Delta \phi\right)$ of $p, \pi^{ \pm}, \gamma$

Probability distribution:

With Kinematic fitting:

Kinematic fitting

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).
Physical process: $p p \rightarrow p p \pi^{+} \pi^{-} \gamma \gamma$ and $\pi^{0} \rightarrow \gamma \gamma$ Measurements: $\left(E_{k i n}, \theta, \phi\right)$ and $\left(\Delta E_{k i n}, \Delta \theta, \Delta \phi\right)$ of $p, \pi^{ \pm}, \gamma$

Probability distribution:

With Kinematic fitting:

Efficiency (Monte Carlo simulation $\omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$) :

No.	Condition	accpt. \times effi. (\%)
1	Geometric acceptance	~ 30.0
2	$1+$ basic conditions	3.9
3	$1+2+$ after kinematic fitting	0.9

Cross sections ($p p$)

