

Dalitz plot analysis of $\omega \to \pi^+\pi^-\pi^0$ decay

Siddhesh Sawant (for WASA-at-COSY collaboration)

Indian Institute of Technology Bombay, Mumbai IKP, Forschungszentrum Jülich

September 20, 2013

Outline

Introduction Why $\omega \to \pi^+ \pi^- \pi^0$?

Experimental setup

Analysis Cut based analysis Kinematic fitting

Summary/outlook

Vector Meson Dominance model

 ω meson ($J^P = 1^-$)

Hadronic $\gamma = \gamma + (\rho, \omega, \phi)$ $(\rho, \omega, \phi) \longleftrightarrow$ electromagnetic interaction of hadron

 $\omega \rightarrow \pi^+ \pi^- \pi^0$

- Vector Meson Dominance
- Calculations of contact terms [S. Leupold, Eur. Phys. J. A 39, 205-212 (2009)]
- \blacktriangleright $\pi\pi$ final state interaction [F. Niecknig, Eur. Phys.J. C 72, 2014 (2012)]

Dalitz plot

- Illustrates dynamics of three body decay
- Provides tool to study the decay mechanism

Previous experiments:

 \sim 4600 $\omega
ightarrow 3\pi$ events

[M. L. Stevenson, Phys Rev. 125, 687 (1962)]

WASA-at-COSY:

Reaction	T_p (GeV)	Expected $\omega \rightarrow 3\pi$ events
$p + p \rightarrow p + p + \omega$	2.06, 2.54	$\sim 10^4$
${\it p}+{\it d} ightarrow { m 3}{ m He}+\omega$	1.45, 1.50	7.2 ×10 ⁴

Experimental setup (WASA-at-COSY)

General Ge

COSY

- Cooler synchrotron and storage ring
- Proton and deuteron beam, momentum: 0.3 to 3.7 GeV/c

WASA

- Pellet target system
- ► Luminosity: 10³¹ 10³² cm⁻² s⁻¹
- 4π detector
- To study production and decays of light mesons, like π, η, ω

WASA detector

WASA detector

Siddhesh Sawant

$\omega \to \pi^+ \pi^- \pi^0$ in p-p collisions

 $p_{beam} \; p_{target}
ightarrow p \; p \; \pi^+ \pi^- \pi^0$

Basic conditions Particle identification

Further condition

$$M^2_{Missing}(beam, target, p, p, \pi^+, \pi^-) \longrightarrow$$

 $p_{beam, ptarget} \rightarrow p, p, \pi^+\pi^- X$

A look at ω signal in data

$$M_{Missing}(beam, target, l) = [(E_{beam} + E_{target} - E_l)^2 - (\vec{p}_{beam} + \vec{p}_{target} - \vec{p}_l)^2]^{\frac{1}{2}}$$

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).

Physical process: $pp \rightarrow pp \ \pi^+\pi^-\gamma\gamma$ and $\pi^0 \rightarrow \gamma\gamma$ Measurements: (E_{kin}, θ, ϕ) of $p, \ \pi^{\pm}, \ \gamma$

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).

Physical process: $pp \rightarrow pp \ \pi^+\pi^-\gamma\gamma$ and $\pi^0 \rightarrow \gamma\gamma$ Measurements: (E_{kin}, θ, ϕ) of $p, \ \pi^{\pm}, \ \gamma$

 $\omega \to \pi^+ \pi^- \pi^0$ in p-p collisions

A first look at the Dalitz plot distribution

$$X = \sqrt{3} \ \frac{T_{\pi^+} - T_{\pi^-}}{Q_\omega}$$
, $Y = 3 \frac{T_{\pi^0}}{Q_\omega} - 1$

where, T_{π^+} , T_{π^-} , T_{π^0} : kinetic energy of π^+ , π^- and π^0 $Q_\omega = T_{\pi^+} + T_{\pi^-} + T_{\pi^0}$

Bin-wise background subtraction

Dalitz plot

Part of available pilot data

Summary/outlook

- Aim: To perform the Dalitz plot analysis of $\omega \to \pi^+\pi^-\pi^0$
- WASA-at-COSY: ω produced in *pp* and *pd* reactions
- Obtained the non-efficiency corrected Dalitz plot (pp data @T_p=2.06 GeV)

Next,

- Obtain the efficiency corrected Dalitz plot
- Analyze other data set (i.e. $pp @T_p=2.54 \text{ GeV}$)
- \blacktriangleright Combine all available data sets \longrightarrow Dalitz plot
- Calulate the Dalitz plot parameter

Back up

Experimental setup: (WASA-at-COSY)

PID

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).

Physical process: $pp \rightarrow pp \ \pi^+\pi^-\gamma\gamma$ and $\pi^0 \rightarrow \gamma\gamma$ Measurements: (E_{kin}, θ, ϕ) and $(\Delta E_{kin}, \Delta \theta, \Delta \phi)$ of $p, \ \pi^{\pm}, \ \gamma$

With Kinematic fitting:

Kinematic fitting: a mathematical procedure in which one uses the energy-momentum conservation to improve the measurements of the process (within errors of measurements).

 $\begin{array}{l} \textit{Physical process: } pp \rightarrow pp \ \pi^{+}\pi^{-}\gamma\gamma \ \text{and} \ \pi^{0} \rightarrow \gamma\gamma \\ \textit{Measurements:} \ \ (E_{kin}, \theta, \phi) \ \text{and} \ (\Delta E_{kin}, \Delta \theta, \Delta \phi) \ \text{of} \ p, \ \pi^{\pm}, \ \gamma \end{array}$

With Kinematic fitting:

Efficiency (Monte Carlo simulation $\omega \to \pi^+ \pi^- \pi^0$):

No.	Condition	accpt. $ imes$ effi. (%)
1	Geometric acceptance	~ 30.0
2	1 + basic conditions	3.9
3	1 + 2 + after kinematic fitting	0.9

Cross sections (pp)

