Exotic Quarkonium Spectroscopy & Production in CMS

E. Aslı Yetkin

Mimar Sinan Fine Arts University, Turkey University of Iowa, USA

School on Concepts of Modern Amplitude Analysis Techniques

Observation of structures in the J/ $\psi \phi$ mass spectrum

Observation of the new states (X(3872),Y(3940),Y(4260)) which do not fit into conventional quark model renewed the interest in exotic states.

Especially the observation of Y(3930)[1] near the J/ $\psi\omega$ threshold motivates the searches for similar structures near J/ $\psi\phi$ threshold

[3] arXiv:1202.5087

 $B^+ \to J/\psi \phi K^+$

CMS detector performance

Excellent CMS performances for quarkonium studies

Silicon Tracking Detector

- Excellent track momentum resolution (ΔpT / pT ~1% for barrel)
- Excellent vertex reconstruction and impact parameter resolution

Muon System

 High purity muon identification
Good dimuon mass resolution (Δm/m ~0.6% for J/ψ)

LHC Luminosity and CMS Triggers

- → CMS collected ~5 fb⁻¹ data at increasing instantaneous luminosity during 2011 at $\sqrt{s=7 \text{ TeV}}$
- Specific trigger paths are developed for different analyses

CMS analysis description

Step I: Reconstructing B⁺ signal

- FIG. 1. Most likely $B \rightarrow J/\psi \phi K$ decay mechanism.
- Step II: Search for structure in J/ψΦ mass spectrum from exclusive B⁺ decays

Data and MC Samples

• Data

- The data were collected in 2011 with the Compact Muon Solenoid (CMS) detector from proton-proton collisions at the Large Hadron Collider (LHC) operating at a center-of-mass energy of 7 TeV
- Events with non-prompt J/ ψ candidates coming from the decays of B mesons are selected at HLT.

• MC

- Signal MC Sample $(B^+ \rightarrow YK^+, Y \rightarrow J/\psi \varphi)$
 - Estimate the mass resolution in the J/ $\psi \phi$ mass spectrum
 - Efficiency estimation
- Phase Space MC $(B^+ \rightarrow J/\psi \phi K)$
 - Study Dalitz plot for phase space
- Background MC Sample $(B^+/B^0/B_s \rightarrow J/\psi + X)$
 - To check possible reflection from other B hadrons

J/ψ and φ signal

The m(K⁺K⁻) distribution is fitted to a P-wave relativistic Breit Wigner function convolved with a Gaussian resolution function. The fit has χ^2 probability of 23% \Rightarrow we observe B⁺ \rightarrow J/ $\Psi\Phi$ K⁺ in our selected ϕ mass window with negligible other components

The exclusive $B^+ \rightarrow J/\psi \phi K^+$ signal

Largest B sample with $B^+ \rightarrow J/\psi \phi K^+$ in the world up to date

<u>Signal PDF</u>: A Gaussian signal <u>Background PDF</u>: A second order Chebychev polynomial

Extracting J/ $\psi \varphi$ signal from B

The $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ is used to investigate the possible structures

- \blacksquare Divide the dataset into the 20 MeV Δ m bins
- \blacksquare Extract the number of B signal for each Δm by fitting the J/ $\psi \phi K$ spectrum
- Mean is fixed to the PDG value of B mass
- RMS is fixed to the number predicted by signal MC
- Plot the B yield with uncertainty in each bin
- Correct the spectrum by relative efficiency

Same method as Belle and BaBar's Y(3940)→J/ψω from B→J/ψωK analysis (PRL 94 (2005) 182002, PRL 101 (2008) 082001)

E.Aslı Yetkin, School on Concepts of Modern Amplitude Analysis Techniques

Observation of structures in the J/ $\psi \phi$ mass spectrum

Robustness of the observed structures

Systematic Uncertainties

To study the systematic uncertainties of the mass and the width of the observed structures the Δm fit is repeated for several options and the largest variations are assigned as systematic

- signal and the background model for B
- Δm binning, Δm mass resolution, Δm structure PDF, and Δm background shape
- relative efficiency
- selection criteria
- additional signal model

Observation of structures in the J/ $\psi \phi$ mass spectrum

The $\Delta m = m(\mu^+\mu^-K^+K^-) - m(\mu^+\mu^-)$ is used to investigate the possible structures

The relative efficiency corrected Δm from the exclusive $B^+ \rightarrow J/\psi \phi K^+$ signal

Δm

	Mass (MeV)	Signal Yield
First Peak	1051.5 ± 2.0	355 ± 46
Second Peak	1220.0 ± 3.0	445 ± 83

 $\Delta m + m(J/\Psi)_{PDG}$

 $m(1^{st}) = 4148.2 \pm 2.0(stat) \pm 5.2(sys) MeV$ $m(2^{nd}) = 4316.7 \pm 3.0(stat) \pm 10.0(sys) MeV$

CMS **confirmed** a structure at 4148 MeV with a significance greater than 5σ and **saw an** evidence for the second structure in the same mass spectrum.

Our purpose for 2012 analysis

- What we are aiming
 - main objective is to perform the analysis with a cleaner B sample with large 2012 data
 - try various ways to have a pure B sample
 - Perform an amplitude analysis, including possible angular information into the fit
- What are the problems we have to solve
 - all the available information on the amplitude analysis is based on the scalars however in our case we have vector mesons.
 - to perform an amplitude analysis we need a clean sample but our data have lots of background

Summary

- By using the data were collected in 2011 with CMS from pp collisions at the LHC operating at a centerof-mass energy of 7 TeV we observed two structures in J/ψΦ spectrum at 4148MeV & 4317MeV
 - \rightarrow confirm the existence of Y(4140)
 - find evidence for a second structure
- Adding the 2012 data we would like to perform an amplitude analysis where we can include angular information in the final fit.

First Report by CDF - 2009

Total integrated luminosity: 2.7 fb⁻¹

Update from CDF - 2010

 $\frac{\mathcal{B}(B^+ \to Y(4140), Y(4140) \to J/\psi\phi)}{\mathcal{B}(B^+ \to J/\psi\phi K)} = 0.149 \pm 0.039 (\text{stat}) \pm 0.034 (sys)$

Results from LHCb - 2011

Event selection - preselection

- Tracks with $p_T > 0.5$ GeV
- $\mu^+\mu^-$ pair with a valid vertex fit
 - mass in 2.7-3.4 GeV
 - each muon has at least I pixel and at least 8 silicon hits
- Additional three tracks
 - total charge +/-1, assigned with kaon mass, $\Delta R(\mu^+\mu^-, K) < 1.5$
- Mass of the 5 tracks ($\mu^+\mu^-K^+K^-K^\mp$) in 5.0-5.6 GeV
- Two K⁺K pairs from three kaon tracks
 - The pair with lower mass is considered as Φ candidate
- Vertex fit to the five tracks and constraint $\mu^+\mu^-$ to nominal J/ ψ mass

Event Selection - final selection

- Tracks with $|\eta| \le 2.4$
- Probability (χ^2)
 - J/ψ vertex fit > 10%, B vertex fit > 1%
- pt (kaon tracks) > I GeV
- J/ ψ vertex flight length significance ≥ 3
- Offline p_T selection
 - datasetA: $p_T(J/\psi) > 7 \text{ GeV}$
 - datasetB: $p_T(J/\psi) > 7 \text{ GeV } \& p_T(\mu^+ \& \mu^-) > 4 \text{ GeV}$
- Mass window
 - J/ψ (\mp 150 MeV) & Φ in 1.008-1.035 GeV (Breit-Wigner shape)
 - constrain $\mu^+\mu^-$ to J/ ψ PDG mass value