PWA Model Selection using a genetic algorithm

Stephan Schmeing, Sebastian Neubert, Karl Bicker

September 19th 2013 School on Concepts of Modern Amplitude Analysis Techniques Flecken-Zechlin, Germany

Introduction: Partial-Wave Analysis at COMPASS

Genetic Algorithm for Model Selection

First Results

Conclusion

Outlook

Partial-Wave Analysis at COMPASS

Diffractive Dissociation in 5 π

No "bump hunting" by eye possible \Rightarrow Partial-Wave Analysis (PWA): J^{P} -Decomposition of mass spectrum using angular distribution

Technische Universität Münc

Partial-Wave Analysis at COMPASS

Partial-Wave Analysis

• Parametrisation of cross section (simplified):

$$\sigma(au) = \sigma_0 \sum_{i,j}^{Waves}
ho_{ij}(m_X) \phi_i(au) \phi_j(au)^*$$

- 11-dimensional maximum likelihood fit to experimental kinematic distributions
- For the calculation the sum over all waves has to be truncated
- Truncation introduces systematic errors
- Optimal model for truncation has to be found

Partial-Wave Analysis at COMPASS Partial-Wave Analysis

Technische Universität München

Spin Density Matrix

Partial-Wave Analysis at COMPASS

Technische Universität München

Model Requirements

- The model should describe the data well
- Interpretation of parameters should be as small as possible
- Orrelations between parameters should be minimal

Partial-Wave Analysis at COMPASS

Technische Universität München

Model Selection

- Traditional way:
 - Compare log(likelihood) for different truncations
 - Use physical arguments and preexisting knowledge
 - Trial and error
- Introduces bias
- Has no methodical handle on systematic errors
- Too many possibilities for 5 π case
- \Rightarrow Use an algorithm for model selection

Genetic Algorithm for Model Selection

Technische Universität München

Working Principle

Genetic Algorithm for Model Selection

Goodness-of-Fit Criterion

- Log(likelihood) alone cannot be used to quantify model quality, since more parameters tend to give better log(likelihood)
- Use Bayes' theorem to judge model quality
 - Evidence \approx Best fit likelihood \cdot Occam factor $P(Data|M_k) \approx P(Data|A_{ML}^k, M_k) \cdot P(A_{ML}^k|M_k) \sigma_{A^k|Data}$
- Additional factor to supress small waves with large errors is introduced
- A number of approximations are needed to calculate this

Genetic Algorithm for Model Selection

Optimization Criteria

- Full search space has to be explored: After a short starting phase the average evidence should fluctuate around constant well below maximum evidence
- As few as possible created models should be invalid (for example due to not converging fits)
- Final result should be (close to) optimal solution: Manually improvement should not be possible

Conditions

- Data from COMPASS 2004 hadron pilot run
- Use a pool of 284 Waves
- Run 100 generations with 50 models each

First Results

 Waveset size optimizes around 34 waves

Technische Universität München

• Finally chosen waveset contains 31 waves

First Results

- Average evidence varies slightly around constant not far from maximum(1834 · 10³)
- Currently only between 16 and 32% of the created models are valid
- Simple manual breeding step can still increase final result

Conclusion

- A genetic algorithm for model selection has been implemented in the framework of the ROOTPWA toolkit: (http://sourceforge.net/projects/rootpwa/)
- A first partial-wave analysis using the algorithm has been performed
- The algorithm converged to a finite number of waves in the model
- High congruence between TOP 20 models
- ⇒ Goodness-of-Fit Criterion works

Outlook

- Tuning of algorithm parameters and selection/mutation methods
- Tests of results with simulated dataset
- Transfer to other decay channels

Backup

PWA formula

$$\sigma(\tau) = \sigma_0 \sum_{\epsilon=-1}^{1} \sum_{i,j}^{Waves} \rho_{ij}^{\epsilon}(m_X) \phi_i^{\epsilon}(\tau) \phi_j^{\epsilon}(\tau)^*$$

Spin density matrix: $\rho_{ij}^{\epsilon}(m_X) = \sum_{r=1}^{Ranks} T_{ir}^{\epsilon} T_{jr}^{\epsilon*}$

Evidence

$$\begin{aligned} \ln P(Data|M_k) &= \ln P(Data|A_{ML}^k, M_k) - \ln V_A^k + \ln \sqrt{(2\pi)^d |C_{A^k|Data}|} + \sum_a^{Waves} \ln S_a \\ \text{Dimension: } d &= \text{number of real parameters} \\ &= 2 \cdot \text{number of complex parameters} \\ \text{Significance: } S_a &= \int_{5\sigma_a}^{\infty} \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{x - |T_a|^2}{2\sigma_a^2} \right] dx \\ \text{Probability of the intensity of wave to be more than } 5\sigma \\ \text{larger than zero} \end{aligned}$$
Parameter volume: $V_A^k = d \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2}+1)} r^{d-1} \\ (d-1) \cdot \text{dimensional hypersphere with radius} \\ r &= \sqrt{N_{events}} \\ (\text{neglecting interference between waves}) \end{aligned}$

Interpretation of Evidence

Evidence not normalised \Rightarrow No absolut interpretation Relative intepretation \Rightarrow Bayes-Faktor: $B_{10} = \frac{P(Data|M_1)}{P(Data|M_0)}$

$\ln B_{10}$	B_{10}	Evidence
0 to 1	1 to 3	Not worth mentioning
1 to 3	3 to 20	Positive
3 to 5	20 to 150	Strong
\geq 5	\geq 150	Very strong