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From 3 Body to 4 Body
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1D projections of a 5D space

Not easy to visualise!
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Mixing Formalism

» The mass eigenstates | DY) and |DJ) can be defined as a

superposition of the flavour eigenstates [D?) and |D)
(assuming no indirect CPV or CPV in mixing)

D1} = —5 (10 + D)
D2) = =5 (10%) = D))

» A D meson is produced in a flavour eigenstate then evolves as a
superposition of its mass eigenstates.

» This gives us mixing!

S. Harnew, J. Rademacker September 26, 2013
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Mixing Formalism

v

The 'amount’ of mixing we get is characterised by the
dimensionless parameters = and y.

— mi1—msg —Fl F2

» mq and mo are the masses of the mass eigenstates.

v

I’y and I'y are the widths of the mass eigenstates.

v

I 1 2

S. Harnew, J. Rademacker September 26, 2013



.Vé University of

B BRISTOL

D-Mixing Formalism for
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Wrong Sign D° — KTn~ntn~ Decays

» Now look at the specific case of mixing in Wrong Sign
DY - Ktn—ntr~ decays.

» There are two routes from the initial to the final state...

S. Harnew, J. Rademacker September 26, 2013
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Wrong Sign D° — KTn~ntn~ Decays

DCS Doubly Cabibbo Suppressed
/_\ (DCS) Amplitude
pt Ktonta~ oo vy Lo

.2 2
R[D® = KFnw a0, )= T [l Apcs (0] + Apos (B)] ek ()ly/ Tt + | Ack ()2 2522 (ro)?]

Apcs(p) - Doubly Cabibbo Suppressed amplitude, varies as a function of phase space

S. Harnew, J. Rademacker September 26, 2013 10 / 32
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Wrong Sign D° — KTn~ntn~ Decays

DCS Cabibbo Favoured (CF)
/-\ Amplitude
Br R e A o De

> S K7
Wl\ -
M%‘ D? /c;

0 2.2 .
R[D® = KFnw a0, = T [l Apes (P2 + Apos (B)] ek ()ly/ Tt + [ Ack ()2 2527 (10)?]

Acr(p) - Cabibbo Favoured amplitude, varies as a function of phase space

S. Harnew, J. Rademacker

September 26, 2013
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A

M% ¥

2 2
R[D® » Ktaatn=|(p,t)=e " [\Ancs<p>|2 + [Apcs (P) || Ack (P)|y'Tt + | Ack (p)|2 2= (I't)?
y = ycos&,‘tg‘gﬂ(p) — zsinég:ﬁr(p)

5g3ﬂ(p) - Strong phase difference between CF and DCS amplitudes

S. Harnew, J. Rademacker September 26, 2013
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Wrong Sign D° — K7~ 7° Decays

» Due to mixing there is time dependent amplitude structure.

» To visualise this, it's easier to look at the three body
DY - Ktn—x0.

R[D® = K¥n~ 0] (p,t)= e~ @Aucsw + 1 Apcs (p) | Ack (P)|¥'Tt + [Ack ()12 2442 (11)?2

AVARRN

1 2 3 1 2 1 2
m(K'n) m2(K') m(K'x)

NOTE: Toy MC with a made up amplitude structure, and parameters fiddled to
exaggerate the effect of mixing.

S. Harnew, J. Rademacker September 2013 13



1 2
m(K')

1 2
m(K'n)

t =127

1 2
m(K'T)

1 2
m(K'T)

1 2
m(K'7)

> All of this toy data was generated with MINT - A fitter written by Jonas
Rademacker that specialises in 4 body amplitude analyses.

new, J. Rademacker September 26, 2013
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Time Dependent Amplitude Analysis of D° — Ktr—7nt7n~

» What would be more in-keeping with this school, and very
interesting, is a time dependent amplitude analysis.
» Realistically this would be difficult...

> Very clean samples are desirable for an amplitude analysis.
» Would have to work in 5+1 dimensions - MINT cannot yet do
this
» At the moment such an analysis is out of reach - but all is not
lost...

» Go Model Independent!

S. Harnew, J. Rademacker September 26, 2013



Vé University of

BRISTOL
Model Independent Analysis of D° — K*r—ntm

» To go model independent we integrate over phase space...

R[D0 - Kta~nta~](¢) = /R[DO — Kta~ 7t~ ] (p, t)dp

2., .2
"ty (T't)?

=e 1 [A%cs + ApcsAcr RE*™y' Tt + Adp
where now y' = ycos 5g3w — zsin (;1D«'3w
» We now have some new quantities in the rate...

AZr = [ |Acr(p)|*dp §%K3™ _ Average Strong Phase Difference

2 2 .
Abcs = [ Mpes(p)l*dp RE3™ _ Coherence Factor € [0, 1]

S. Harnew, J. Rademacker September 26, 2013
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J AP)pcsA* (P)er dp _ R o-ith
ApcsAcr P

Abcs :/\A(P)Dcs|2dp

2 ' 2
Aze = [1A@)crPap o
0 02 04 06 08 1
o
D

> The coherence factor RE3™ gives a measure of how much the
interference is diluted from integrating over phase space.

> 5{, is the average strong phase difference between amplitudes.

» Current constraints on RE3™ — §53™ from CLEO-c shown in the
figure. [1]

[1] Phys.Rev. D80, 031105, 2009

S. Harnew, J. Rademacker September 26, 2013
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Right Sign D’ — K- 7"7~n" Decays

R[D’ —» K~ rntn~at](t)= Agpe™ "

» Use Right Sign decays as a normalisation channel

» These are completely dominated by the Cabibbo Favoured
Amplitude (no Mixing).

S. Harnew, J. Rademacker September 26, 2013
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WS to RS ratio

Right Sign Decay Wrong Sign Decay
CF DCS
DY K atan—nt DY Ktpn—gta—

=
7
<
U\
(o]
w»n
=
7
<l
o\
o

_ R[D0—>K+7777r+7r7](t)
T(t) - R[DO—>K_7T+7r—7r+](t)

=714 +rpRE3™y'Tt + 7352:92 (Ft)2

» By taking the ratio of WS to RS decays it is possible to cancel
many detection and selection efficiencies

» rp is the ratio Apcs/Acr

S. Harnew, J. Rademacker September 26, 2013
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CKM phase ~
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CKM complex phase ~

» CP violation enters the standard model through complex phases
in the CKM matrix.

» By requiring the CKM matrix to be unitary, one can define
several 'unitary triangles’

» The most interesting of these triangles is:

VudVub* ViV

ViuaVap + VeaVig + VidVip = 0

VedVep*

> v is the least constrained angle of the triangle.

S. Harnew, J. Rademacker September 26, 2013



.Vé University of

AL BRISTOL
CKM complex phase ~

> ~ is only accessible when an amplitude involving a b — u
transition, interferes with other amplitudes.

> One method is using B¥ — DK™ decays where here D
represents a D° or a DY.

» If the D meson decays to a final state that is accessible from
both a D? and a D°, we have the required interference to
extract gammaie. D - K o ntm™

S. Harnew, J. Rademacker September 26, 2013
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From RE3™ and 653" to gamma

» These are the rates for a model independent (phase space

integrated) measurement of v from Bt — DK™ where
D— K rntn—nt

R(Bi — DK™, D— K+7r77r+7r7) & 15415 4+2rprp RE*™ cos(658°™ +6p —7)

R(BJr — DK*, D — K77T+7T77T+) X rh+rh+2rerp R cos(05 ™ +55+7)

» The highlighted parameters also appear in our model
independent mixing rates.

» Maybe we can learn something about these through mixing?
Then apply these to a v measurement.

S. Harnew, J. Rademacker September 26, 2013
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WS to RS ratio

» As a reminder, this is the theoretical rate for the WS to RS

ratio:

R|DV—K+ra—ntn—|t) - 2,2 2
T(t) = R{D0—>K*7r+7r*7r4(t) - T2D + TDRgg ylrt + = 1‘3/ (Ft)

y = ycos 683 — xgin g8

» Usually one would associate this with a mixing analysis i.e.
constraining x and y.

» We are turning this around, using previous measurements of x
and y to constrain Rg?”’ and 553”.

S. Harnew, J. Rademacker September 26, 2013
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Toy Simulation Studies

» Generate 8 million Right Sign +
Wrong Sign toy events using the
CLEO-c central values for RE3™
and 653”. o

» This is the approximate statistics
expected from 201142012 data
taking at LHCb % o2 o.'4RK39.'6 08 1

D

> Use the toy data to extract constraints on RE3™ and 6537, [2]

[2] arXiv:1309.0134

S. Harnew, J. Rademacker September 26, 2013
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Toy Simulation Studies

CLEO-C DATA TOY SIMULATION

o N N N o N N N N o N N N N
0 02 04,06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Ry Ry Ry
D D D

» The real power of this analysis can be seen when combining
with CLEO-c. [2]

» Considerable improvement in RE3™ and 653" constraints.
» Analysis with LHCb data in progress.

[2] arXiv:1309.0134

S. Harnew, J. Rademacker September 26, 2013



.Vé University of

B BRISTOL

Model Inspired Binning
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Binned Coherence Factor

» So far we have considered RfD and (5{7 obtained by integrating
over the entire kinematically allowed region.

» Can also measure the same quantities for subsets of this
region...

Jo A(P)DCsA* (p)cr dp _ pien —iss®
ApcsAcr p

» Measure v though an interference effect.

» Want the dilution of the interference to be as small as possible.
» Therefore want Rgeg close to 1.0

» Can we devise a binning strategy that makes RéeQ as large as
possible?

S. Harnew, J. Rademacker September 26, 2013 29 / 32
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Model Inspired Binning

» A DCS and CF model would allow us to bin in areas of similar

strong phase difference.

» Small dots show the integrand evaluated at random points in
phase space - the coherence factor is the average of these.
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Binned Coherence Factor

» For interest, we can look how these bins are distributed in the
projections...

Imag(Zp)
o
T

05 0 05
Real(Z})

» IMPORTANT: Such a binning requires a CF and a DCS amplitude model -
this toy study assumes perfect models.

» This is called 'model inspired’ binning

S. Harnew, J. Rademacker September 26, 2013
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Conclusions

» LHCb is expected to make a significant improvement to the
constraints on the Kwmm Coherence Factor and Strong Phase
Difference.

» These quantities let us sweep the rich amplitude structure under
the carpet...

> Negatives: Loss in sensitivity due to less information.
» Positives: Much simpler method, and no model systematics.

> In the future sensitivity to v could be increased by using a
model inspired binning.

S. Harnew, J. Rademacker September 26, 2013



