# Constraining the $D \rightarrow K^{+} \boldsymbol{\pi}^{-} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$ Coherence Factor Using D Mixing 


S. Harnew, J. Rademacker

Introduction

- Four Body Phase Space
- D Mixing
- General Case
- Wrong Sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$Decays
- CKM Phase $\gamma$
- Constraining the $D \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$Coherence Factor
- Model Inspired Binning
- Conclusions

4 Body Phase Space

## From 3 Body to 4 Body



Commonly seen
'Dalitz Plot'

## From 3 Body to 4 Body



Commonly seen
'Dalitz Plot'
$D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$
(5-dim phase space)


1D projections of a 5D space Not easy to visualise!

## General D-Mixing Formalism

## Mixing Formalism

- The mass eigenstates $\left|D_{1}^{0}\right\rangle$ and $\left|D_{2}^{0}\right\rangle$ can be defined as a superposition of the flavour eigenstates $\left|D^{0}\right\rangle$ and $\left|\bar{D}^{0}\right\rangle$ (assuming no indirect CPV or CPV in mixing)

$$
\begin{aligned}
& \left|D_{1}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{0}\right\rangle+\left|\bar{D}^{0}\right\rangle\right) \\
& \left|D_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{0}\right\rangle-\left|\bar{D}^{0}\right\rangle\right)
\end{aligned}
$$

- A D meson is produced in a flavour eigenstate then evolves as a superposition of its mass eigenstates.
- This gives us mixing!


## Mixing Formalism

- The 'amount' of mixing we get is characterised by the dimensionless parameters $x$ and $y$.

$$
x \equiv \frac{m_{1}-m_{2}}{\Gamma} \quad y \equiv \frac{\Gamma_{1}-\Gamma_{2}}{2 \Gamma} .
$$

- $m_{1}$ and $m_{2}$ are the masses of the mass eigenstates.
- $\Gamma_{1}$ and $\Gamma_{2}$ are the widths of the mass eigenstates.
- $\Gamma$ is the average width.

$$
\Gamma=\frac{\Gamma_{1}+\Gamma_{2}}{2}
$$

## D-Mixing Formalism for $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$

Wrong Sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$Decays


- Now look at the specific case of mixing in Wrong Sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$decays.
- There are two routes from the initial to the final state...

Wrong Sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$Decays

$\mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right](\mathbf{p}, t)=e^{-\Gamma t}\left[\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|^{2}+\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right| y^{\prime} \Gamma t+\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right|^{2} \frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}\right]$
$\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})$ - Doubly Cabibbo Suppressed amplitude, varies as a function of phase space

Wrong Sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$Decays

$\mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right](\mathbf{p}, t)=e^{-\Gamma t}\left[\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|^{2}+\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right| y^{\prime} \Gamma t+\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right|^{2} \frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}\right]$
$\mathcal{A}_{\mathrm{CF}}(\mathbf{p})$ - Cabibbo Favoured amplitude, varies as a function of phase space

Wrong Sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+-} \pi^{-}$Decays

$\mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right](\mathbf{p}, t)=e^{-\Gamma t}\left[\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|^{2}+\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right| y^{\prime} \Gamma t+\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right|^{2} \frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}\right]$
$y^{\prime}=y \cos \delta_{D}^{K 3 \pi}(\mathbf{p})-x \sin \delta_{D}^{K 3 \pi}(\mathbf{p})$
$\delta_{D}^{K 3 \pi}(\mathbf{p})$ - Strong phase difference between CF and DCS amplitudes

## Wrong Sign $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$ Decays

- Due to mixing there is time dependent amplitude structure.
- To visualise this, it's easier to look at the three body $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$.
$\mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}\right](\mathbf{p}, t)=e^{-\Gamma t}\left[\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|^{2}+\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right| y^{\prime} \Gamma t+\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right|^{2} \frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}\right]$



NOTE: Toy MC with a made up amplitude structure, and parameters fiddled to exaggerate the effect of mixing.

Time Dependent Amplitude Analysis of $D^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$









- All of this toy data was generated with MINT - A fitter written by Jonas Rademacker that specialises in 4 body amplitude analyses.

Time Dependent Amplitude Analysis of $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$

- What would be more in-keeping with this school, and very interesting, is a time dependent amplitude analysis.
- Realistically this would be difficult...
- Very clean samples are desirable for an amplitude analysis.
- Would have to work in $5+1$ dimensions - MINT cannot yet do this
- At the moment such an analysis is out of reach - but all is not lost...
- Go Model Independent!

Model Independent Analysis of $D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$

- To go model independent we integrate over phase space...

$$
\begin{aligned}
\mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right](t) & =\int \mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right](\mathbf{p}, t) \mathrm{d} \mathbf{p} \\
& =e^{-\Gamma t}\left[\mathcal{A}_{\mathrm{DCS}}^{2}+\mathcal{A}_{\mathrm{DCS}} \mathcal{A}_{\mathrm{CF}} R_{D}^{K 3 \pi} y^{\prime} \Gamma t+\mathcal{A}_{\mathrm{CF}}^{2} \frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}\right]
\end{aligned}
$$

where now

$$
y^{\prime}=y \cos \delta_{D}^{K 3 \pi}-x \sin \delta_{D}^{K 3 \pi}
$$

- We now have some new quantities in the rate...

$$
\begin{array}{ll}
\mathcal{A}_{\mathrm{CF}}^{2}=\int\left|\mathcal{A}_{\mathrm{CF}}(\mathbf{p})\right|^{2} \mathrm{~d} \mathbf{p} & \delta_{D}^{K 3 \pi}-\text { Average Strong Phase Difference } \\
\mathcal{A}_{\mathrm{DCS}}^{2}=\int\left|\mathcal{A}_{\mathrm{DCS}}(\mathbf{p})\right|^{2} \mathrm{~d} \mathbf{p} & R_{D}^{K 3 \pi}-\text { Coherence Factor } \in[0,1]
\end{array}
$$

## Coherence Factor \& Average Strong Phase Difference

$$
\begin{gathered}
\frac{\int \mathcal{A}(\mathbf{p})_{\mathrm{DCS}} \mathcal{A}^{*}(\mathbf{p})_{\mathrm{CF}} \mathrm{~d} \mathbf{p}}{\mathcal{A}_{\mathrm{DCS}} \mathcal{A}_{\mathrm{CF}}} \equiv R_{D}^{f} e^{-i \delta_{D}^{f}} \\
\mathcal{A}_{\mathrm{DCS}}^{2}=\int\left|\mathcal{A}(\mathbf{p})_{\mathrm{DCS}}\right|^{2} \mathrm{~d} \mathbf{p} \\
\mathcal{A}_{\mathrm{CF}}^{2}=\int\left|\mathcal{A}(\mathbf{p})_{\mathrm{CF}}\right|^{\mathrm{d} \mathbf{d} \mathbf{p}}
\end{gathered}
$$



- The coherence factor $R_{D}^{K 3 \pi}$ gives a measure of how much the interference is diluted from integrating over phase space.
- $\delta_{D}^{f}$ is the average strong phase difference between amplitudes.
- Current constraints on $R_{D}^{K 3 \pi}-\delta_{D}^{K 3 \pi}$ from CLEO-c shown in the figure. [1]
[1] Phys.Rev. D80, 031105, 2009

Right Sign $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$Decays

$\mathrm{R}\left[D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}\right](t)=\mathcal{A}_{\mathrm{CF}}^{2} e^{-\Gamma t}$

- Use Right Sign decays as a normalisation channel
- These are completely dominated by the Cabibbo Favoured Amplitude (no Mixing).


## WS to RS ratio



Wrong Sign Decay

$r(t)=\frac{\mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right](t)}{\mathrm{R}\left[D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}\right](t)}=r_{D}^{2}+r_{D} R_{D}^{K 3 \pi} y^{\prime} \Gamma t+\frac{x^{2}+y^{2}}{4}(\Gamma t)^{2}$

- By taking the ratio of WS to RS decays it is possible to cancel many detection and selection efficiencies
- $r_{D}$ is the ratio $\mathcal{A}_{\mathrm{DCS}} / \mathcal{A}_{\mathrm{CF}}$

CKM phase $\gamma$

## CKM complex phase $\gamma$

- CP violation enters the standard model through complex phases in the CKM matrix.
- By requiring the CKM matrix to be unitary, one can define several 'unitary triangles'
- The most interesting of these triangles is:

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$



- $\gamma$ is the least constrained angle of the triangle.


## CKM complex phase

- $\gamma$ is only accessible when an amplitude involving a $b \rightarrow u$ transition, interferes with other amplitudes.
- One method is using $B^{+} \rightarrow D K^{+}$decays where here $D$ represents a $D^{0}$ or a $\bar{D}^{0}$.
- If the D meson decays to a final state that is accessible from both a $D^{0}$ and a $\bar{D}^{0}$, we have the required interference to extract gamma i.e. $D \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$.



## From $R_{D}^{K 3 \pi}$ and $\delta_{D}^{K 3 \pi}$ to gamma

- These are the rates for a model independent (phase space integrated) measurement of $\gamma$ from $B^{+} \rightarrow D K^{+}$where $D \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$
$\mathrm{R}\left(B^{-} \rightarrow D K^{-}, D \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right) \propto r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} R_{D}^{K 3 \pi} \cos \left(\delta_{D}^{K 3 \pi}+\delta_{B}-\gamma\right)$
$\mathrm{R}\left(B^{+} \rightarrow D K^{+}, D \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}\right) \propto r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} R_{D}^{K 3 \pi} \cos \left(\delta_{D}^{K 3 \pi}+\delta_{B}+\gamma\right)$
- The highlighted parameters also appear in our model independent mixing rates.
- Maybe we can learn something about these through mixing? Then apply these to a $\gamma$ measurement.
uch

1) C-

> Constraining the
> $D \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$Coherence Factor Using D Mixing

## WS to RS ratio

- As a reminder, this is the theoretical rate for the WS to RS ratio:

$$
\begin{gathered}
r(t)=\frac{\mathrm{R}\left[D^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-}\right](t)}{\mathrm{R}\left[D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}\right](t)}=r_{D}^{2}+r_{D} R_{D}^{K 3 \pi} y^{\prime} \Gamma t+\frac{x^{2}+y^{2}}{4}(\Gamma t)^{2} \\
y^{\prime}=y \cos \delta_{D}^{K 3 \pi}-x \sin \delta_{D}^{K 3 \pi}
\end{gathered}
$$

- Usually one would associate this with a mixing analysis i.e. constraining $x$ and $y$.
- We are turning this around, using previous measurements of $x$ and $y$ to constrain $R_{D}^{K 3 \pi}$ and $\delta_{D}^{K 3 \pi}$.


## Toy Simulation Studies

- Generate 8 million Right Sign + Wrong Sign toy events using the CLEO-c central values for $R_{D}^{K 3 \pi}$ and $\delta_{D}^{K 3 \pi}$.
- This is the approximate statistics expected from $2011+2012$ data taking at LHCb

- Use the toy data to extract constraints on $R_{D}^{K 3 \pi}$ and $\delta_{D}^{K 3 \pi}$. [2]
[2] arXiv:1309.0134


## Toy Simulation Studies

## CLEO-C DATA



TOY SIMULATION


## COMBINATION



- The real power of this analysis can be seen when combining with CLEO-c. [2]
- Considerable improvement in $R_{D}^{K 3 \pi}$ and $\delta_{D}^{K 3 \pi}$ constraints.
- Analysis with LHCb data in progress.
[2] arXiv:1309.0134

Model Inspired Binning

## Binned Coherence Factor

- So far we have considered $R_{D}^{f}$ and $\delta_{D}^{f}$ obtained by integrating over the entire kinematically allowed region.
- Can also measure the same quantities for subsets of this region...

$$
\frac{\int_{\Omega} \mathcal{A}(\mathbf{p})_{\mathrm{DCS}} \mathcal{A}^{*}(\mathbf{p})_{\mathrm{CF}} \mathrm{~d} \mathbf{p}}{\mathcal{A}_{\mathrm{DCS}} \mathcal{A}_{\mathrm{CF}}} \equiv R_{D}^{f \in \Omega} e^{-i \delta_{D}^{f \in \Omega}}
$$

- Measure $\gamma$ though an interference effect.
- Want the dilution of the interference to be as small as possible.
- Therefore want $R_{D}^{f \in \Omega}$ close to 1.0
- Can we devise a binning strategy that makes $R_{D}^{f \in \Omega}$ as large as possible?


## Model Inspired Binning

- A DCS and CF model would allow us to bin in areas of similar strong phase difference.
- Small dots show the integrand evaluated at random points in phase space - the coherence factor is the average of these.

$$
I(\mathbf{p})=\frac{\mathcal{A}(\mathbf{p})_{\mathrm{DCS}} \mathcal{A}^{*}(\mathbf{p})_{\mathrm{CF}}}{\mathcal{A}_{\mathrm{DCS}} \mathcal{A}_{\mathrm{CF}}} \quad \int_{\Omega} I(\mathbf{p}) \mathrm{d} \mathbf{p} \equiv R_{D}^{f \in \Omega} e^{-i \delta_{D}^{f \in \Omega}} \equiv Z_{D}^{f \in \Omega}
$$

1 BIN


3 BINS


12 BINS


## Binned Coherence Factor

- For interest, we can look how these bins are distributed in the projections...


- IMPORTANT: Such a binning requires a CF and a DCS amplitude model this toy study assumes perfect models.
- This is called 'model inspired' binning


## Conclusions

- LHCb is expected to make a significant improvement to the constraints on the $K \pi \pi \pi$ Coherence Factor and Strong Phase Difference.
- These quantities let us sweep the rich amplitude structure under the carpet...
- Negatives: Loss in sensitivity due to less information.
- Positives: Much simpler method, and no model systematics.
- In the future sensitivity to $\gamma$ could be increased by using a model inspired binning.

