

Amplitude Analysis of the 5-Pion System in Diffractive Pion Dissociation at COMPASS — Low t'

Sebastian Neubert on behalf of the COMPASS collaboration

DPG Frühjahrstagung 2012

supported by: Maier-Leibnitz-Labor der TU und LMU München, Cluster of Excellence: Origin and Structure of the Universe,

BMBF, EU

Diffractive Pion Dissociation

Partial Wave Decomposition in 5-Body-Mass Bins

Resonances Embedded in the 5π Continuum

Formalism Exploring Resonant Contributions

Diffractive Dissociation into 5 Pions

Technische Universität Müncher

2004 COMPASS Hadron Run

- 190 $\operatorname{GeV} \pi^-$ beam
- Pb target

- Multiplicity Trigger
- NO Recoil Detector

Diffractive Dissociation into 5 Pions

Technische Universität Müncher

2004 COMPASS Hadron Run

- 190 $\operatorname{GeV} \pi^-$ beam
- Pb target

- Multiplicity Trigger
- NO Recoil Detector

пп

🛞 Isobar Model for 5 π Final State

Technische Universität München

Challenges and Approaches

5-body isobar model

Isobar Decay Tree

- 11 indepependent variables τ:
 4 vertices × 2 angles + 3 isobar masses
- Decay amplitudes ψ(τ) in Helicity formalism
- Non-relativistic model

Sebastian Neubert - Amplitude Analysis of the 5-Pion System

🛞 Isobar Model for 5 π Final State

Challenges and Approaches

5-body isobar model

5-Body PWA Specials

- Decay topologies
- Many possible partial waves
- Assembly of waveset not possible by hand
- ⇒ Waveset evolution
- 284 waves tested

Isobar Decay Tree

- 11 indepependent variables τ:
 4 vertices × 2 angles + 3 isobar masses
- Decay amplitudes ψ(τ) in Helicity formalism
- Non-relativistic model

Mass Independent Amplitude Fit

Intensity distribution \mathcal{I} as a function of decay-kinematic variables τ :

Mass Independent Amplitude Fit

Intensity distribution \mathcal{I} as a function of decay-kinematic variables τ :

$$\mathcal{I}(\tau) = \sum_{\epsilon = \pm 1} \sum_{r} \left| \sum_{\substack{\alpha \in M \\ \gamma \neq \alpha}} \frac{\mathcal{T}_{\alpha r}^{\epsilon}}{\mathcal{V}_{\alpha}^{\epsilon}(\tau)} \right|^{2}$$

• Finite *waveset M*
• Production amplitude
• Decay amplitude

The likelihood \mathcal{L} to observe (a specific set of) *N* events in a bin with finite acceptance $\eta(\tau)$ (assuming a model *M*, parameters T_{ir}^{ϵ}) is:

$$P(\text{Data}|T_{ir}, M) = \mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N} \underbrace{\frac{\mathcal{I}(\tau_{i})\eta(\tau_{i})f(\tau_{i})}{\int \mathcal{I}(\tau)\eta(\tau)d\rho(\tau)}}_{=\bar{N}} \quad \text{with} \quad d\rho(\tau) = f(\tau)d\tau$$

Structures of the Spin Density Matrix

Mass Dependent Parameterization

Technische Universität München

пп

$$T^{\epsilon}_{\alpha}T^{\epsilon*}_{\beta} = \rho^{\epsilon}_{\alpha\beta}(m) = \left(\sum_{k} G^{\epsilon}_{\alpha k} \mathcal{A}_{\alpha k}(m) \sqrt{\rho_{\alpha}(m)}\right) \left(\sum_{l} G^{\epsilon}_{\beta l} \mathcal{A}_{\beta l}(m) \sqrt{\rho_{\beta}(m)}\right)^{*} \cdot \rho_{5\pi}(m) F(m)$$
(1)

¹[N. A. Törnqvist Z. Phys. C68(1995)647]

Mass Dependent Parameterization of Spin Density Matrix

Technische Universität Müncher

$$T^{\epsilon}_{\alpha}T^{\epsilon*}_{\beta} = \rho^{\epsilon}_{\alpha\beta}(m) = \left(\sum_{k} C^{\epsilon}_{\alpha k} \mathcal{A}_{\alpha k}(m) \sqrt{\rho_{\alpha}(m)}\right) \left(\sum_{l} C^{\epsilon}_{\beta l} \mathcal{A}_{\beta l}(m) \sqrt{\rho_{\beta}(m)}\right)^{*} \cdot \rho_{5\pi}(m) F(m)$$
(1)

with Breit-Wigner amplitudes:

$$\mathcal{A}_{\alpha k}(m, M_0, \Gamma_0) = \frac{M_0 \Gamma_0}{m^2 - M_0^2 + i \Gamma_0 M_0} \qquad k = \text{resonance}$$
(2)

and fixed width, including meson "formfactor" $F(m)^1$ In each fitted wave a coherent, constant background term is allowed, such that

$$\mathcal{A}_{\alpha k}(m) = c_{\alpha \mathrm{bkg}} \qquad k = \mathrm{bkg}.$$
 (3)

The phase space factors

$$\rho_{\alpha}(m) = \int |\psi_{\alpha}^{\epsilon}|^2 d\tau \tag{4}$$

¹[N. A. Törnqvist Z. Phys. C68(1995)647]

Final Waveset

From evolutionary exploration

		L
Technische	Universität	Mü

hen

J ^{PC} M [€]	ls	Isobar1 Isobar2	Decay Isobar2					
0-+0+	<i>S</i> 0	$\pi^{-} f_0(1500)$	$\rho(770) \begin{pmatrix} 0\\ 0 \end{pmatrix} \rho(770) \bullet$					
0-+0+	<i>S</i> 0	$\pi - f_0(1500)$	$(\pi \pi)_{\rm S} {0 \choose 0} (\pi \pi)_{\rm S}$					
0-+0+	<i>S</i> 0	ρ(770)a ₁ (1260)	$\pi^{-}\begin{pmatrix}0\\1\end{pmatrix}\rho(770)$ •					
0-+0+	D 2	ρ(770)a ₁ (1260)	$\pi^{-} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$					
0-+0+	<i>S</i> 0	$(\pi\pi)_{\rm S}\pi(1300)$	$\pi^{-}(\pi\pi)_{S}$	2-+0+	<u>S</u> 2	$\pi^{-} f_{2}(1270)$	$\pi \mp \begin{pmatrix} 1 \\ 1 \end{pmatrix} a_1 (1260)$	
0-+0+	P 1	$ ho(770)\pi(1300)$	$\pi^{-} \begin{pmatrix} 0 \\ 0 \end{pmatrix} (\pi \pi)_{S}$	2-+0+	S 2	$o(770)a_{1}(1260)$	$\pi^{-}(0) \rho(770)$	
1++0+	<i>S</i> 1	$\pi^{-}\rho(1600)$	$\rho(770)\binom{0}{1}(\pi\pi)_{\rm S}$	2-+0+	52	$\rho(770)a_{0}(1320)$	$\pi^{-}(2)_{o}(770)$	
1++0+	<i>P</i> 0	$\pi^{-} f_{0}(1370)$	$ \rho(770) \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rho(770) \bullet $	2-+0+	D 0	$\rho(770)a_1(1260)$	$\pi^{-}(0) \rho(770)$	
1++0+	P 0	$\pi^{-}(4\pi)_{0^{++}}$	$(\pi\pi)_{\rm S}(\pi\pi)_{\rm S}$	2-+0+	PO	$(\pi\pi) = \pi(1800)$	$\pi^{-}(0)(\pi\pi)\alpha$	
1++0+	<i>P</i> 1	$\pi^{-} f_{1}(1285)$	$\pi \mp \begin{pmatrix} 1 \\ 1 \end{pmatrix} a_1(1260) \bullet$	2-+0+	. с П 2	$\pi = f_{\rm e}(1270)$	$\pi \pm \begin{pmatrix} 0 \\ 1 \end{pmatrix}_{a_1} (1260)$	
1++0+	<i>S</i> 1	$ ho$ (770) π (1300)	$\pi^{-}\begin{pmatrix}1\\1 ight) ho$ (770) •	2-+0+	60	$f_2(1270) = -(1670)$	$= - \begin{pmatrix} 0 \\ 1 \end{pmatrix} f_{1}(1200)$	
1++0+	<i>S</i> 1	$ ho(770)\pi(1300)$	$\pi^{-} \begin{pmatrix} 0 \\ 0 \end{pmatrix} (\pi \pi)_{S}$	2-+0+	5 Z		$\pi (2)^{12}(1270)$	
1++0+	D 1	$ ho(770)\pi(1300)$	$\pi^{-} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rho(770)$	2 . 0 .	F I	$\pi \rho(1000)$	$p(110)(1)(\pi\pi)S$	
1++0+	<i>S</i> 1	$(\pi \pi)_{\rm S} a_1(1260)$	$\pi^{-} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$	3 10	<i>D</i> 1	$(\pi\pi)_{\rm S}a_1(1260)$	$\frac{\pi}{1}\rho(770)$	
1++0+	S 1	$(\pi\pi)_{\rm S} a_1(1260)$	$\pi^{-}(1)(\pi\pi)_{S}$	1 0	D 1	ρ(770)a ₁ (1260)	$\pi = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$	
1++0+	D 1	$(\pi\pi)_{\rm S}a_1(1260)$	$\pi^{-} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770) \bullet$	FLAI		• waves	used in mass independer	nt f
1++0+	D 2	$(\pi\pi)_{\rm S} a_2(1320)$	$\pi = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \rho(770)$					
1++0+	P 0	$(\pi \pi)_{\rm S} \pi (1300)$	$\pi^{-}(\dot{0})(\pi\pi)_{S}$					
1++0+	<i>S</i> 1	$\pi - \eta_1(1600)$	$\pi \mp (\check{0}) a_1(1260)$					
1++0+	<i>S</i> 1	$\pi^{-}\rho(1700)$	$\pi \mp \begin{pmatrix} i \\ 0 \end{pmatrix} \pi (1300)$					
1++0+	P 2	ρ(770)a ₁ (1260)	$\pi = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$					
1				1				

The 0⁻⁺ Sector

The 1⁺⁺ Sector

How Many **a**₁ States Do We Need? Fit With TWO Resonances

ны

The 2⁻⁺ Sector

How Many π_2 States Do We Need? Fit With ONE Resonance

How Many π_2 States Do We Need? Fit With TWO Resonances

How Many π_2 States Do We Need? Fit With THREE Resonances –

How Many π_2 States Do We Need? Fit With FOUR Resonances

Summary

- Diffractive dissociation of π^- into 5π on lead (COMPASS 2004)
- First full 5-body PWA in 5π mass bins
- Semi-automatic model selection with genetic optimization
 - $\bullet \ \rightarrow \text{handle on systematic uncertainties}$
- First successful mass-dependent fits
 - Known states: π₂(1670), π(1800) observed
 - Elusive $\pi_2(1880)$ fitted in $a_1\rho$ and $a_2\rho$
 - Fit with two 1⁺⁺ resonances
 - Possible π₂(2200) signal

Outlook

- Large data-set $\pi^- + p \rightarrow 5\pi + p$ at high t' on tape
- Analysis of 4π subsystem

Evolutionary Waveset Exploration

Genetic Algorithm — 284 Waves in Pool

Evidence = Goodness of fit

● Bayesian Statistics → regularized Log-Likelihood

Final set of best performing models

Takes into account model complexity

Final Waveset

From evolutionary exploration

	IPC ME	le	Isobar1 Isobar2	Docay Isobar?					
	0-+0+	2.5	- 4 (1500a12	(770) (0) (770)					
	0 0	50	$\pi I_0(1500)$	$\rho(110)(\frac{1}{0})\rho(110)$	•				
	0-+0+	S 0	$\pi - f_0(1500)$	$(\pi \pi)_{S} \begin{pmatrix} 0\\ 0 \end{pmatrix} (\pi \pi)_{S}$					
	0-+0+	<i>S</i> 0	ρ(770)a ₁ (1260)	$\pi^{-}\begin{pmatrix}0\\1\end{pmatrix}\rho(770)$	•				
	0-+0+	D 2	ρ(770)a ₁ (1260)	$\pi^{-} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$					
	0-+0+	<i>S</i> 0	$(\pi \pi)_{\rm S} \pi (1300)$	$\pi^{-}(\pi\pi)_{S}$		2-+0+	S 2	$\pi^{-} f_{2}(1270)$	$\pi \mp \begin{pmatrix} 1 \\ 1 \end{pmatrix} a_1 (1260)$ •
	0-+0+	P 1	$ ho(770)\pi(1300)$	$\pi^{-} \begin{pmatrix} 0 \\ 0 \end{pmatrix} (\pi \pi)_{S}$		2-+0+	52	o(770)a. (1260)	$\pi^{-}(0) \circ(770)$
	1++0+	S 1	$\pi^{-}\rho(1600)$	$\rho(770) \begin{pmatrix} 0 \\ 1 \end{pmatrix} (\pi \pi)_{\rm S}$		2 0	02	p(110)a1(1200)	- (2)
	1++0+	PO	$= \frac{1}{f_{1}(1270)}$	a(770)(0)a(770)		2 '0'	52	$\rho(770)a_2(1320)$	$\pi \left(\frac{1}{1}\right) \rho(770) \bullet$
	1 0	7 0		p(110)(0)p(110)		2-+0+	D 0	ρ(770)a ₁ (1260)	$\pi^{-} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770) \bullet$
	1 0	P 0	$\pi (4\pi)_{0++}$	$(\pi \pi)_{S}(\pi \pi)_{S}$		2-+0+	P 0	$(\pi \pi)_{\odot} \pi (1800)$	$\pi^{-}(0)(\pi\pi)_{S}$
	1++0+	P 1	$\pi - f_1(1285)$	$\pi^{+}\binom{1}{1}a_{1}(1260)$	•	2-+0+	0.2	- f (1070)	-== (1) a (1260)
	1++0+	<i>S</i> 1	$\rho(770)\pi(1300)$	$\pi^{-} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rho(770)$	•	2 0	02	π ¹ 2(1270)	$\pi^{-1}(1)a_1(1200)$
1	1++0+	<i>S</i> 1	$\rho(770)\pi(1300)$	$\pi^{-}(0)(\pi\pi)_{S}$		2 0	52	$t_2(12/0)\pi_2(16/0)$	$\pi \begin{pmatrix} 2 \\ 2 \end{pmatrix} t_2(1270)$
	1++0+	D 1	$a(770)\pi(1300)$	$\pi^{-}(1) o(770)$		2-+0+	P 1	$\pi^{-}\rho(1600)$	$\rho(770) {0 \choose 1} (\pi \pi)_{\rm S}$
	1++0+	S 1	$(\pi \pi) \approx 2 \cdot (1260)$	$\pi^{-}(0) \circ (770)$		3++0+	D 1	$(\pi\pi)_{\rm S}a_1(1260)$	$\pi = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$
	1 0	01	(<i>n n</i>)Sa1(1200)	" (1) p(110)		1-+0-	D 1	$\rho(770)a_1(1260)$	$\pi^{-}(0)\rho(770)$
	1++0+	S 1	$(\pi\pi)_{\rm S}a_1(1260)$	$\pi^{-} \begin{pmatrix} \cdot \\ 0 \end{pmatrix} (\pi \pi)_{S}$		FLAT		1.(-)-1()	(1)/(-)
	1++0+	D 1	$(\pi \pi)_{\rm S} a_1(1260)$	$\pi^{-} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$	•			• waves	used in mass independent fit.
	1++0+	D 2	$(\pi\pi)_{\rm S} a_2(1320)$	$\pi = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \rho(770)$					
	$1^{++}0^{+}$	P 0	$(\pi \pi)_{\rm S} \pi (1300)$	$\pi^{-} (0) (\pi \pi)_{S}$					
	1++0+	<i>S</i> 1	$\pi^{-}\eta_{1}(1600)$	$\pi \mp \begin{pmatrix} 0 \\ 1 \end{pmatrix} a_1(1260)$					
	1++0+	<i>S</i> 1	$\pi^{-}\rho(1700)$	$\pi \mp \begin{pmatrix} 1 \\ 0 \end{pmatrix} \pi (1300)$					
	1++0+	P 2	ρ(770)a ₁ (1260)	$\pi^{-} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rho(770)$					

пп

Resonance Parameters

Par	rameter Fit				PDG
Re	esonance J ^{PC} (MeV/			c ²)	
	π(1300)		Μ	1400*	1300 ± 100
			Г	500 [†]	200600
	$\pi(1800)$	0^{-+}	Μ	$1781 \pm 5^{+1(+8)}_{-6(-6)}$	1816 ± 14
			Г	$168 \pm 9^{+5(+62)}_{-14(-15)}$	208 ± 12
0	<i>a</i> ₁ (1900)	1++	Μ	$1853 \pm 7^{+36(+36)}_{-6(-49)}$	1930^{+30}_{-70}
			Г	$443 \pm 14^{+12(+98)}_{-45(-65)}$	155 ± 45
0	<i>a</i> ₁ (2200)	1++	Μ	$2202\pm8^{+15(+53)}_{-8(-11)}$	$2096\pm17\pm121$
			Г	$402 \pm 17^{+41(+125)}_{-52(-51)}$	$451\pm41\pm81$
	$\pi_2(1670)$	2-+	Μ	1719.0 [†]	1672.4 ± 3.2
- ()			Г	251.4 [†]	259 ± 9
	$\pi_2(1880)$	2-+	Μ	$1854 \pm 6^{+6(+6)}_{-4(-9)}$	1895 ± 16
			Γ 259 ± 13 ⁺⁷⁽⁺⁷⁾ ₋₁₇₍₋₃₁₎		235 ± 34
0	$\pi_2(2100)$	2-+	Μ	$2133 \pm 12^{+7(+43)}_{-18(-18)}$	2090 ± 29
			Г	$448 \pm 22^{+60(+80)}_{-40(-40)}$	625 ± 50
			Μ		2245 ± 60
			Г		320^{+100}_{-40}
	 not estab 	lished		* at limit: † fixed in fit	

Sebastian Neubert - Amplitude Analysis of the 5-Pion System

🛞 Isobars that have been used

	4π Isobars ($G = +$))	3π Isobars ($G=-$)
Name	Mass / GeV	$\mathrm{I}^{G}J^{PC}$	4π subsystem
f ₀	1370 / 1500 / 1700	0+(0++)	×10 ³
η	1405	$0^+(0^{-+})$	Lie COMPASS 2004
ρ'	1450 / 1700	$1^+(1^{})$	$\frac{1}{5}$ 14 $\frac{1}{5}$ $\sqrt{2}$
b_1	1235 / 1800	$1^{+}(1^{+-})$	
f_1	1285 / 1420	$0^{+}(1^{++})$	10 reliminar
f ₂	1270 / 1565	$0^+(2^{++})$	
η'_2	1645	$0^+(2^{-+})$	
ρ_3	1690	$1^+(3^{})$	E /
η_1	1600	0+(1-+)	
b_0	1800	$1^+(0^{+-})$	Invariant Mass of $\pi^{+}\pi^{+}\pi^{-}$ Subsystem (GeV/c ²)
b ₂	1800	$2^+(2^{+-})$	

🛞 Isobars that have been used

lsobars that have been used

	4π Isobars ($G = +$)	3π Isobars ($G = -$)			
Name	Mass / GeV	$I^G J^{PC}$	Name	Mass / GeV	$I^G J^{PC}$
f ₀	1370 / 1500 / 1700	$0^+(0^{++})$			
η	1405	$0^+(0^{-+})$	a ₁	1270	$1^{-}(1^{++})$
ho'	1450 / 1700	$1^{+}(1^{})$	a_2	1320	$1^{-}(2^{++})$
<i>b</i> ₁	1235 / 1800	$1^{+}(1^{+-})$	π'	1300	$1^{-}(0^{-+})$
<i>f</i> ₁	1285 / 1420	$0^{+}(1^{++})$	π_2	1670	1-(2-+)
f ₂	1270 / 1565	$0^+(2^{++})$			
η'_2	1645	$0^+(2^{-+})$			
ρ_3	1690	$1^+(3^{})$			
η_1	1600	$0^+(1^{-+})$			
b_0	1800	$1^+(0^{+-})$	π_1	1600	$1^{-}(1^{-+})$
b ₂	1800	$2^{+}(2^{+-})$			-

2π subsystem: σ , ρ (770), f_2 (1270)

Acceptance Correction Accepted Phase-Space MC $m_{5\pi} \in [1840, 2080] \text{ MeV}/c^2$

Acceptance Correction II Accepted Phase-Space MC $m_{5\pi} \in [1840, 2080] \text{ MeV}/c^2$

Sebastian Neubert - Amplitude Analysis of the 5-Pion System

Acceptance Correction III

Figure:
Kinematic Validation of Fit Data vs Weighted Monte Carlo $m_{5\pi} \in [1840, 2080] \text{ MeV}/c^2$

Kinematic Validation of Fit Data vs Weighted Monte Carlo $m_{5\pi} \in [1840, 2080] \text{ MeV}/c^2$

4π Isospin Symmetrization

 2π decay amplitude is isospin-symmetric, independent of $I_{(\pi\pi)}$

$$\langle \mathbf{1}_1^{\pm}; \mathbf{1}_1^{\mp} \mid \mathcal{D} \mid \mathit{I}_2^0 \rangle = \frac{2}{\sqrt{c}} \langle \mathbf{1}_1^{+}; \mathbf{1}_1^{-} \mid \mathcal{D} \mid \mathit{I}_2^0 \rangle.$$

3 4π Isospin Symmetrization

 2π decay amplitude is isospin-symmetric, independent of $I_{(\pi\pi)}$

$$\langle \mathbf{1}_1^{\pm}; \mathbf{1}_1^{\mp} \mid \mathcal{D} \mid \mathit{I}_2^0 \rangle = \frac{2}{\sqrt{c}} \langle \mathbf{1}_1^+; \mathbf{1}_1^- \mid \mathcal{D} \mid \mathit{I}_2^0 \rangle.$$

For three and four pion systems this is not true:

$$\begin{array}{l} \langle \pi^{\pm}\sigma \mid \mathcal{D} \mid \mathbf{1}_{3}^{\pm} \rangle \quad \text{symmetric} \\ \langle \pi^{\pm}\rho^{0} \mid \mathcal{D} \mid \mathbf{1}_{3}^{\pm} \rangle \quad \text{antisymmetric} \end{array}$$

4π Isospin Symmetrization

 2π decay amplitude is isospin-symmetric, independent of $I_{(\pi\pi)}$

$$\langle \mathbf{1}_1^{\pm}; \mathbf{1}_1^{\mp} \mid \mathcal{D} \mid \mathit{I}_2^0 \rangle = \frac{2}{\sqrt{c}} \langle \mathbf{1}_1^+; \mathbf{1}_1^- \mid \mathcal{D} \mid \mathit{I}_2^0 \rangle.$$

For three and four pion systems this is not true:

 $\begin{array}{l} \langle \pi^{\pm}\sigma \mid \mathcal{D} \mid \mathbf{1}_{3}^{\pm} \rangle \quad \text{symmetric} \\ \langle \pi^{\pm}\rho^{\mathbf{0}} \mid \mathcal{D} \mid \mathbf{1}_{3}^{\pm} \rangle \quad \text{antisymmetric} \end{array}$

$$\begin{split} \langle 4\pi \mid \mathcal{D} \mid \mathbf{1}_{4}^{0} \rangle &= \left(\frac{1}{\sqrt{2}}\right) \langle \mathbf{1}_{1}^{-}; \mathbf{1}_{3}^{+} \mid \mathcal{D} \mid \mathbf{1}_{4}^{0} \rangle \cdot \left(\frac{1}{\sqrt{2}}\right) \langle \mathbf{1}_{1}^{+}; \mathbf{1}_{2}^{0} \mid \mathcal{D} \mid \mathbf{1}_{3}^{+} \rangle \cdot \frac{2}{\sqrt{2}} \langle \mathbf{1}_{1}^{+}; \mathbf{1}_{1}^{-} \mid \mathcal{D} \mid \mathbf{1}_{2}^{0} \rangle \\ &+ \left(\frac{-1}{\sqrt{2}}\right) \langle \mathbf{1}_{1}^{+}; \mathbf{1}_{3}^{-} \mid \mathcal{D} \mid \mathbf{1}_{4}^{0} \rangle \cdot \left(\frac{-1}{\sqrt{2}}\right) \langle \mathbf{1}_{1}^{-}; \mathbf{1}_{2}^{0} \mid \mathcal{D} \mid \mathbf{1}_{3}^{-} \rangle \cdot \frac{2}{\sqrt{2}} \langle \mathbf{1}_{1}^{+}; \mathbf{1}_{1}^{-} \mid \mathcal{D} \mid \mathbf{1}_{2}^{0} \rangle \end{split}$$

X

P

4π Isospin Symmetrization

 2π decay amplitude is isospin-symmetric, independent of $I_{(\pi\pi)}$

Exotic 4π System ... or excited ρ ?

Technische Universität München

$$G = (-1)^{I} \cdot C$$

For the 4π system G = +.

Exotic 4π System ... or excited ρ ?

Technische Universität München

$$G = (-1)^{\prime} \cdot C$$

For the 4π system G = +. Consider a $J^P = 1^-$ state

$$I = 0 \quad \Rightarrow \quad J^{PC} = 1^{-+}$$
$$I = 1 \quad \Rightarrow \quad J^{PC} = 1^{--}$$

(5)

Exotic 4π System ... or excited ρ ?

Technische Universität München

$$G = (-1)^{\prime} \cdot C$$

For the 4π system G = +. Consider a $J^P = 1^-$ state

$$I = 0 \quad \Rightarrow \quad J^{PC} = 1^{-+}$$

$$I = 1 \quad \Rightarrow \quad J^{PC} = 1^{--}$$
(5)

$$4\pi
ightarrow \pi^{\pm} a_1^{\mp}
ightarrow \pi^{\pm} (\pi^{\mp}
ho^0)$$

$$\begin{split} \langle 4\pi \mid \mathcal{D} \mid I_{4}^{0} \rangle &= \left(\frac{1}{\sqrt{2}}\right) \langle 1_{1}^{-}; 1_{3}^{+} \mid \mathcal{D} \mid 1_{4}^{0} \rangle \cdot \left(\frac{1}{\sqrt{2}}\right) \langle 1_{1}^{+}; 1_{2}^{0} \mid \mathcal{D} \mid 1_{3}^{+} \rangle \cdot \frac{2}{\sqrt{2}} \langle 1_{1}^{+}; 1_{1}^{-} \mid \mathcal{D} \mid 1_{2}^{0} \rangle \\ & \pm \left(\frac{-1}{\sqrt{2}}\right) \langle 1_{1}^{+}; 1_{3}^{-} \mid \mathcal{D} \mid 1_{4}^{0} \rangle \cdot \left(\frac{1}{\sqrt{2}}\right) \langle 1_{1}^{-}; 1_{2}^{0} \mid \mathcal{D} \mid 1_{3}^{-} \rangle \cdot \frac{2}{\sqrt{2}} \langle 1_{1}^{+}; 1_{1}^{-} \mid \mathcal{D} \mid 1_{2}^{0} \rangle \end{split}$$

Analysis of the 4π Subsystem

Analysis of the 4π Subsystem

Problems:

- More than one resonance in an isobar-channel (Unitarity!)
- Rescattering

Idea: (c.f. E791 $D^+ \rightarrow K^- \pi^+ \pi^+$)

- Do NOT put any model
- Replace 4-body amplitude \rightarrow with piecewise constant amplitude
- Free fit of amplitude in isobar channel

Caveat:

- Need another isobar to act as interferometer
- Needs huge statistics (many fit-parameters)

Analysis of the 4π Subsystem

Problems:

- More than one resonanc
- Rescattering

Idea: (c.f. E791 $D^+ \to K^- \tau$

- Do NOT put any model
- Replace 4-body amplitud
- Free fit of amplitude in is

Caveat:

- Need another isobar to act as intenerometer
- Needs huge statistics (many fit-parameters)

$\textcircled{3}4\pi$ decay of $I^G(J^{PC})=0^+(1^{++})f_1$

Technische Universität München

пп

$\textcircled{3}4\pi$ decay of $I^G(J^{PC})=0^+(2^{++})f_2$

Technische Universität München

Previous Search for 0⁺(1⁻⁺) in $\bar{p}n \rightarrow 5\pi$ Abele et Al. Eur. Phys. J. C 21 (2001) 261

- Initial state (at rest) dominated by $I^G = 1^ J^{PC} = 0^{-+}$ ($\bar{p}n$ s-wave)
- 4π subsystem dominated by 0⁺0⁺⁺
- $\rho(1450)$ and $\rho(1700)$ found with PDG values
- Search for $\eta_1(1400)$ as Partner to $\pi_1(1400)$
 - Cannot be established (although slight increase in loglikelihood)
 - But: $0^{-+} \rightarrow \pi \eta_1$ requires P-Wave!
 - and: η_1 might be heavier while PhaseSpace is limited in $\bar{p}n$

Technische Universität München

$\otimes \pi_2(1880)$ Mass Measurements

Mass (MeV/c^2)	Experiment	Reaction
$1929\pm24\pm18$	E852	$\pi^- p ightarrow \eta \eta \pi^- p$
$1876\pm11\pm67$	E852	$\pi^- p ightarrow \omega \pi^- \pi^0 p$
$2003\pm88\pm148$	E852	$\pi^- p ightarrow \eta \pi^- \pi^+ \pi^- p$
$1880\pm20\pm148$	CB	$ar{m{ ho}}m{ ho} o \eta\eta\pi^{m{0}}\pi^{m{0}}$
$1836 \pm 13 + 0 - 44$	COMPASS	$\pi^- Pb ightarrow \pi^- \pi^+ \pi^- Pb$
1876 ± 13	COMPASS	$\pi^- Pb \rightarrow \pi^- \pi^+ \pi^- \pi^+ \pi^- Pb$

Table: Measured values for the mass of the $\pi_2(1880)$ resonances. As reported in [?] and compared to the COMPASS results. It is interesting that for both the 3π [?] and the new 5π result agree very well.

$3 5\pi$ Phase Space Parameterization

Technische Universität München

пп

$$\rho_{5\pi} = a(m - m_{thresh})^5 \cdot [1 + b(m - m_{thresh})]$$
(6)

PWA Formalism Redux 2Stage Isobar-Model Fit

Mass-Independent PWA

• Fit angular distributions + isobar systems in independent mass bins

$$\sigma(\tau, m) = \sum_{\epsilon=\pm 1} \sum_{r=1}^{N_r} \left| \sum_{i} \frac{T_{ir}^{\epsilon}(m)}{r} \frac{f_i^{\epsilon}(t')}{r} \psi_i^{\epsilon}(\tau, m) \right|^2$$

- Production amplitude
- t'-dependence (helicity "flip") -
- Decay amplitude (Helicity formalism, reflectivity basis)

PWA Formalism Redux 2Stage Isobar-Model Fit

Mass-Independent PWA

• Fit angular distributions + isobar systems in independent mass bins

$$\sigma(\tau, m) = \sum_{\epsilon=\pm 1} \sum_{r=1}^{N_r} \left| \sum_{i} \frac{T_{ir}^{\epsilon}(m)}{r} \frac{f_i^{\epsilon}(t')}{r} \psi_i^{\epsilon}(\tau, m) \right|^2$$

- Production amplitude
- t'-dependence (helicity "flip")
- Decay amplitude (Helicity formalism, reflectivity basis)

Mass-Dependent χ^2 fit \rightarrow Extract Resonance Parameters

- Parameterization of spin-density matrix elements $\sum_{r} T_{ir}^{\epsilon} T_{ir}^{\epsilon*}(m_{\chi})$
- Takes into account interference terms
- Coherent background for some waves

Mass Independent Amplitude Fit

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^N}{N!}e^{-\bar{N}}\right]\prod_i^N \frac{\mathcal{I}(\tau_i)}{\bar{N}}\eta(\tau_i)f(\tau_i) = \frac{1}{N!}\prod_i^N \mathcal{I}(\tau_i)\cdot\prod_i^N \eta(\tau_i)f(\tau_i)\cdot e^{-\bar{N}}$$

Mass Independent Amplitude Fit Definition of LogLikelihood Function

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N}\frac{\mathcal{I}(\tau_{i})}{\bar{N}}\eta(\tau_{i})f(\tau_{i}) = \frac{1}{N!}\prod_{i}^{N}\mathcal{I}(\tau_{i})\cdot\prod_{i}^{N}\eta(\tau_{i})f(\tau_{i})\cdot e^{-\bar{N}}$$

Taking the logarithm and inserting for \bar{N} :

$$\ln \mathcal{L} = -N \ln N + \sum_{i}^{N} \eta(\tau_{i}) f(\tau_{i}) + \sum_{i}^{N} \ln \mathcal{I}(\tau_{i}) - \int \mathcal{I}(\tau) \eta(\tau) d\rho(\tau)$$

Mass Independent Amplitude Fit Definition of LogLikelihood Function

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N}\frac{\mathcal{I}(\tau_{i})}{\bar{N}}\eta(\tau_{i})f(\tau_{i}) = \frac{1}{N!}\prod_{i}^{N}\mathcal{I}(\tau_{i})\cdot\prod_{i}^{N}\eta(\tau_{i})f(\tau_{i})\cdot e^{-\bar{N}}$$

Taking the logarithm and inserting for \bar{N} :

$$\ln \mathcal{L} = -N \ln N + \sum_{i}^{N} \eta(\tau_{i}) f(\tau_{i}) + \sum_{i}^{N} \ln \mathcal{I}(\tau_{i}) - \int \mathcal{I}(\tau) \eta(\tau) d\rho(\tau)$$

drop $(-N \ln N + \sum_{i}^{N} \eta(\tau_i) f(\tau_i))$ and insert intensity parameterization

$$\ln \mathcal{L} = \sum_{n=1}^{N_{\text{events}}} \ln \left[\sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} \bar{\psi}_{\alpha}^{\epsilon} (\tau_n) \bar{\psi}_{\beta}^{\epsilon} (\tau_n)^* \right] - \sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} IA_{\alpha\beta}^{\epsilon}$$

Mass Independent Amplitude Fit Definition of LogLikelihood Function

Technische Universität München

$$\mathcal{L} = \left[\frac{\bar{N}^{N}}{N!}e^{-\bar{N}}\right]\prod_{i}^{N}\frac{\mathcal{I}(\tau_{i})}{\bar{N}}\eta(\tau_{i})f(\tau_{i}) = \frac{1}{N!}\prod_{i}^{N}\mathcal{I}(\tau_{i})\cdot\prod_{i}^{N}\eta(\tau_{i})f(\tau_{i})\cdot e^{-\bar{N}}$$

Taking the logarithm and inserting for \bar{N} :

$$\ln \mathcal{L} = -N \ln N + \sum_{i}^{N} \eta(\tau_{i}) f(\tau_{i}) + \sum_{i}^{N} \ln \mathcal{I}(\tau_{i}) - \int \mathcal{I}(\tau) \eta(\tau) d\rho(\tau)$$

drop $(-N \ln N + \sum_{i}^{N} \eta(\tau_i) f(\tau_i))$ and insert intensity parameterization

$$\ln \mathcal{L} = \sum_{n=1}^{N_{\text{events}}} \ln \left[\sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} \bar{\psi}_{\alpha}^{\epsilon} (\tau_n) \bar{\psi}_{\beta}^{\epsilon} (\tau_n)^* \right] - \sum_{\epsilon,r} \sum_{\alpha,\beta \in M} T_{\alpha r}^{\epsilon} T_{\beta r}^{\epsilon*} IA_{\alpha\beta}^{\epsilon}$$
$$IA_{\alpha\beta}^{\epsilon} = \int \bar{\psi}_{\alpha}^{\epsilon} (\tau_n) \bar{\psi}_{\beta}^{\epsilon} (\tau_n)^* \eta(\tau) \mathrm{d}\tau$$

Which waves to include into the waveset?

Which waves to include into the waveset?

Avoid overfitting

Which waves to include into the waveset?

Avoid overfitting

\rightarrow Data driven method

How to Measure the Goodness of a Model

Bayes' Theorem (for the Model Probability after Observation)

$$P(M_k | ext{Data}) = rac{P(ext{Data} | M_k) P(M_k)}{\sum_{k'} P(ext{Data} | M_{k'}) P(M_{k'})}$$

with model-priors $P(M_k) = \sum_{k'} P(M_{k'}) = 1$

How to Measure the Goodness of a Model

Bayes' Theorem (for the Model Probability after Observation)

$$P(M_k | \text{Data}) = \frac{P(\text{Data} | M_k) P(M_k)}{\sum_{k'} P(\text{Data} | M_{k'}) P(M_{k'})}$$

with model-priors $P(M_k) = \sum_{k'} P(M_{k'}) = 1$

Marginal Likelihood or Evidence

$$P(\mathrm{Data}|M_k) = \int \underbrace{P(\mathrm{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\mathrm{Prior}} dT^k$$

 $P(T^k|M_k)$ contains any pre-knowledge on the model-parameters T

- Marginalization (= $\int dT$) is not trivial in high-dimensional spaces
- Numerically stable is only the LogLikelihood

Technische Universität München

uu.

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\text{Data}|M_k) = \int \underbrace{P(\text{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\text{Prior}} dT^k$$

Sebastian Neubert - Amplitude Analysis of the 5-Pion System

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\mathrm{Data}|M_k) = \int \underbrace{P(\mathrm{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\mathrm{Prior}} dT^k$$

Approximate with Laplace's method:

$$P(\text{Data}|M_k) \approx P(\text{Data}|T_{\text{ML}}^k, M_k) \cdot \underbrace{P(T_{\text{ML}}^k|M_k) \cdot \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}}|}}_{\text{Over finite}}$$

Occam factor

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\text{Data}|M_k) = \int \underbrace{P(\text{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\text{Prior}} dT^k$$

Approximate with Laplace's method:

$$P(\text{Data}|M_k) \approx P(\text{Data}|T_{\text{ML}}^k, M_k) \cdot \underbrace{P(T_{\text{ML}}^k|M_k) \cdot \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}|}}_{Occam \ factor}$$

• $P(\text{Data}|T_{\text{ML}}^k, M_k)$ LogLikelihood at maximum likelihood solution T_{ML}

- $\bullet~|\textbf{C}_{\mathcal{T}|\mathrm{Data}}|$ determinant of covariance matrix
- Dimension of parameter space: d

Technische Univer

David J. C. MacKay, 2003 "Information Theory, Inference and Learning Algorithms"

$$P(\text{Data}|M_k) = \int \underbrace{P(\text{Data}|T^k, M_k)}_{\mathcal{L}} \underbrace{P(T^k|M_k)}_{\text{Prior}} dT^k$$

Approximate with Laplace's method:

$$P(\text{Data}|M_k) \approx P(\text{Data}|T_{\text{ML}}^k, M_k) \cdot \underbrace{P(T_{\text{ML}}^k|M_k) \cdot \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}|}}_{Occam \ factor}$$

• $P(\text{Data}|T_{\text{ML}}^k, M_k)$ LogLikelihood at maximum likelihood solution T_{ML}

- $\bullet~|\textbf{C}_{\mathcal{T}|\mathrm{Data}}|$ determinant of covariance matrix
- Dimension of parameter space: d

Logarithmic evidence:

$$\ln P(\mathrm{Data}|M_k) pprox \ln P(\mathrm{Data}|T^k_{\mathrm{ML}},M_k) + \ln P(T^k|M_k) + \ln \sqrt{(2\pi)^d}|\mathbf{C}_{T|D}|$$

Technische Univer

Log-Evidence

$$\mathsf{n} P(Data|M_k) pprox \mathsf{ln} \mathcal{L}_{ML} + \mathsf{ln} \sqrt{(2\pi)^d |\mathbf{C}_{T|\text{Data}|}} - \mathsf{ln} V_T^k + \sum_{i \in M} \mathsf{ln} S_i$$

where V_T^k is the (prior) volume of parameter space

Models (=wavesets) compared through the Bayes-Factor

$$\mathsf{B}_{12} = \frac{\mathsf{P}(\mathsf{Data}|\mathsf{M}_1)}{\mathsf{P}(\mathsf{Data}|\mathsf{M}_2)}$$

• Interpretation according to Kass&Raftery:

$2 \ln B_{12}$	B_{12}	Evidence
0 to 2	1 to 3	Not worth mentioning
2 to 6	3 to 20	Positive
6 to 10	20 to 150	Stong
> 10	> 150	Very strong

Kass, Raftery, Bayes Factors, J. Am. Stat. Assoc. 90 (1995) 773

Technische Universität Mür
Diffractive Pion Dissociation Partial Wave Decomposition in 5-Body-Mass Bins Resonances Embedded in the 5 π Continuum

Automatic Waveset Exploration

Technische Universität Müncher

Genetic Algorithm

Figure of Merrit

- Bayesian Statistics \rightarrow regularized Log-Likelihood
- Takes into account model complexity

Diffractive Pion Dissociation Partial Wave Decomposition in 5-Body-Mass Bins Resonances Embedded in the 5 T Continuum

Automatic Waveset Exploration

Genetic Algorithm - 100 generations, population size 50

- Pool: \sim 300 waves
- Small wave suppression 5σ
- Waveset size optimizes around 34 waves