Time-dependent amplitude-model analysis of $D^0 \to K^0_S \pi^+ \pi^-$ at LHCb

Stefanie Reichert

The University of Manchester on behalf of the LHCb collaboration

School on concepts of modern amplitude analysis techniques 2013

25th of September 2013

The University of Manchester

Outline

> Motivation

- > The LHCb experiment
- > Analysis strategy
- > Amplitude model
- > GPU fitting
- > Selection

> Conclusion and outlook 25.09.2013

Decay-time dependent amplitude-model analysis of self-conjugate $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays:

> Access to charm mixing parameters x_D and y_D

> Measure indirect CP violation via |q/p| and $\phi = arg(p,q)$

> Expected sensitivities at $\mathcal{L}_{int} = 3 \, \mathrm{fb}^{-1}$ (2011 and 2012 data set)

- 0.23% for x_D and 0.17% for y_D [LHCb2013]
- 0.2 for |q/p| and 11.7° for ϕ [LHCb2013]

BABAR results for $\mathcal{L} = 468.5 \,\mathrm{fb}^{-1}$ [BaBar2010]

- > $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ from prompt $D^{*\,+} \rightarrow D^0 \pi^+ + cc$ decays
- > Yield ~541k, purity 98.5%

> Amplitude model

- P- and D-wave (8 resonances): relativistic Breit-Wigner
- $\pi^+\pi^-$ S-wave: K-matrix
- $K_S^0 \pi^{\pm}$ S-wave: LASS
- > Combined with $D^0 \rightarrow K_S^0 K^+ K^-$: yield: ~80k, purity: 99.2%

 $D^0 \rightarrow K_S^0 \pi^+ \pi^$ $x_D = (0.26 \pm 0.24) \%$ $y_D = (0.60 \pm 0.21) \%$ $D^0 \to K^0_S K^+ K^$ $x_D = (-1.36 \pm 0.92) \%$ $y_D = (0.44 \pm 0.57) \%$

Combined

 $x_D = (0.16 \pm 0.23 \pm 0.12 \pm 0.08) \%$ $y_D = (0.57 \pm 0.20 \pm 0.13 \pm 0.07) \%$

25.09.2013

Belle results for $\mathcal{L} = 921 \, \mathrm{fb}^{-1}$ [Belle2013]

> $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ from prompt $D^{*+} \rightarrow D^0 \pi^+ + cc$ decays

> Yield ~1.23M, purity 95.6%

> Amplitude model

- P- and D-wave (12 resonances): relativistic Breit-Wigner
- $\pi^+\pi^-$ S-wave: K-matrix
- $K_S^0 \pi^{\pm}$ S-wave: LASS

Preliminary results No CP violation

 $x_D = (0.56 \pm 0.19 \, {}^{+0.03}_{-0.09} \, {}^{+0.06}_{-0.09}) \,\%$

$$y_D = (0.30 \pm 0.15 \, {}^{+0.04}_{-0.05} \, {}^{+0.03}_{-0.06}) \,\%$$

No direct CP violation

$$|q/p| = (0.90 \,{}^{+0.16}_{-0.15} \,{}^{+0.05}_{-0.04} \,{}^{+0.06}_{-0.05})$$

$$\phi = \arg(p,q) = (-6 \pm 11 \, {}^{+3}_{-3} \, {}^{+3}_{-4})^{\circ}$$

The LHCb experiment: Detector

$> K_S^0$ -meson decays

- inside Vertex Locator: long tracks $\rightarrow K_S^0$ (LL)
- outside Vertex Locator: downstream track $\rightarrow K_S^0$ (DD)

25.09.2013

The LHCb experiment: Trigger

> Hardware trigger

- Muon and Dimuon: transverse momentum
- Hadron, Photon, Electron: transverse energy

> Software-based trigger

- Momentum
- Transverse momentum
- Track fit χ^2/dof
- Impact parameter

Analysis strategy

$D^0 \rightarrow K_S^0 \pi^+ \pi^-$ accessible through:

- > Prompt $D^{*+} \rightarrow D^0 \pi^+ + cc$
 - High yield
 - Access only to high D^0 decay times
- > Semileptonic $B^- \to D^0 \mu^- \bar{\nu}_{\mu} + cc$
 - High trigger efficiency
 - Access to all D^0 decay times
- > Semileptonic $\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu} + cc$
 - High trigger efficiency
 - Clean signature
 - Access to all D^0 decay times

Analysis strategy

- > Prompt $D^{*+} \rightarrow D^0 \pi^+ + cc$
- > Semileptonic $B^- \to D^0 \mu^- \bar{\nu}_{\mu} + cc \leftarrow \text{this talk}$
- > Semileptonic $\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu} + cc$
- \Rightarrow Fit to all sub samples for combined 2011 and 2012 data set corresponding to ${\cal L}=3\,{\rm fb}^{-1}$

⇒ Mixing and indirect CP violation parameters

Analysis strategy

Analysis in progress \rightarrow only LHCb simulation shown

- > Prompt $D^{*+} \rightarrow D^0 \pi^+ + cc$
- > Semileptonic $B^- \to D^0 \mu^- \bar{\nu}_{\mu} + cc \leftarrow \text{this talk}$
- > Semileptonic $\bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu} + cc$
- \Rightarrow Fit to all sub samples for combined 2011 and 2012 data set corresponding to ${\cal L}=3\,{\rm fb}^{-1}$

⇒ Mixing and indirect CP violation parameters

Resonance	${\rm Mass}[{\rm GeV}/c^2]$	$\rm Width[GeV/c^2]$	Spin	Parametrisation
		$\pi^+\pi^-$		
$\rho(770)$	0.775	0.480	1	Gounaris-Sakurai
$\pi^+\pi^-$ S-wave			0	K-matrix
$f_2(1270)$	1.275	0.270	2	Relativistic Breit-Wigner
$\omega(782)$	0.783	0.180	1	Relativistic Breit-Wigner
		$K_S^0 \pi^-$		
$K^{*}(892)^{-}$	0.892	0.230	1	Relativistic Breit-Wigner
$K_0^*(1430)^-$	1.430	0.600	0	LASS
$K_2^*(1430)^-$	1.426	0.700	2	Relativistic Breit-Wigner
$K^*(1680)^-$	1.717	0.700	1	Relativistic Breit-Wigner
		$K_S^0 \pi^+$		
$K^{*}(892)^{+}$	0.892	0.230	1	Relativistic Breit-Wigner
$K_0^*(1430)^+$	1.430	0.600	0	LASS
$K_2^*(1430)^+$	1.426	0.700	2	Relativistic Breit-Wigner
Non-resonant $K_S^0 \pi^+ \pi^-$				

Masses and widths taken from LHCb data base, Model [Babar2010]

- > Possible further resonances to be included [Belle2013]
 - $\pi^+\pi^-: \rho(1450)$
 - $K_S^0 \pi^- : K^* (1410)^-$
 - $K_S^0 \pi^+ : K^*(1410)^+, K^*(1680)^+$
- > Introduction of artificial structure in non-resonant contribution

GPU fitting

> GPUs provide significant speed-up compared to CPUs

• Speed-up of factor 100-150 realistic

> Parallel fitting framework GooFit [GooFit] implemented in CUDA

- Maximum likelihood fits
- Time-dependent amplitude-model analyses

> Amplitude models available in GooFit (excerpt)

- Relativistic Breit-Wigner
- Gounaris-Sakurai
- LASS parametrisation
- Ongoing work on implementation of K-matrix

Selection

1. Trigger

- 2. LHCb wide preselection
- 3. Cut-based offline selection

4. Multivariate classifier relying on data

- NeuroBayes
- Boosted Decision Tree in TMVA
 ⇒ Similar performance but implementation of BDT simpler
 - \Rightarrow BDT chosen

Selection: Preselection efficiency

 $D^0 \to K^0_S (\mathrm{DD}) \, \pi^+ \pi^-$

Effect of efficiencies on acceptance correction?

Selection: Relative trigger efficiency

$D^0 \to K^0_S (\mathrm{DD}) \, \pi^+ \pi^-$

Variation in efficiencies \Rightarrow large acceptance corrections

Conclusion and outlook

> Analysis of $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ decays to measure $x_D, y_D, |q/p|, \phi$ - current world-averages from HFAG allowing CP violation [HFAG]

- $x_D = (0.49^{+0.17}_{-0.18})\%$ and $y_D = (0.74 \pm 0.09)\%$
- $|q/p| = 0.69^{+0.17}_{-0.14}$ and $\phi = (-29.6^{+8.9}_{-7.5})^{\circ}$
- > Selection of $D^0 \to K^0_S \pi^+ \pi^-$ from $B^- \to D^0 \mu^- \bar{\nu}_\mu + cc$ finalised

> Next steps:

- Acceptance studies
- Fitting Toy Monte-Carlo \rightarrow validate fitter

> Also perform analysis for $D^0 \to K^0_S K^+ K^-$

25.09.2013

Thank you.

[LHCb2008] The LHCb detector at the LHC, The LHCb collaboration, J. Instrum. 3 S08005 (2008)

[Belle2013] $D^0 - \overline{D}^0$ mixing and CP violation in $D^0 \rightarrow K_S hh$ measurements, L. Li on behalf of the Belle collaboration, Charm 2013, <u>https://indico.hep.manchester.ac.uk/contributionDisplay.py?</u> sessionId=19&contribId=24&confId=4022

[Babar2010] Measurement of $D^0 - \overline{D}^0$ mixing parameters using $D^0 \to K_S^0 \pi^+ \pi^-$ and $D^0 \to K_S^0 K^+ K^-$ decays, The Babar collaboration, Phys. Rev. Lett.105 (2010)

[LHCb2013] Implications of LHCb measurements and future prospects, The LHCb collaboration, EPJ C 73 (2013) 2373

[HFAG] <u>http://www.slac.stanford.edu/xorg/hfag/charm/</u> <u>April13/results_mix+cpv.html</u>

Backup

> sPlot formalism relies on maximisation of extended log-likelihood

$$\mathcal{L} = \sum_{e=1}^{N} \ln \left\{ \sum_{i=1}^{N_s} N_i f_i(y_e) \right\} - \sum_{i=1}^{N_s} N_i$$

- ${\cal N}$ total number of events in data set
- N_{s} number of species of events in the given data set
- N_i average number of events expected for the i^{th} species
- $f_i(y_e)$ value of the probability density function for the i^{th} species f_i at a set of discriminating variables y_e for event e

> Maximisation of extended log-likelihood

> sWeight for each event and each species

$${}_{s}\mathcal{P}_{n}(y_{e}) = \frac{\sum_{j=1}^{N_{s}} V_{nj}f_{j}(y_{e})}{\sum_{k=1}^{N_{s}} N_{k}f_{k}(y_{e})} \quad \text{with} \quad V_{nj}^{-1} = \frac{-\partial^{2}\mathcal{L}}{\partial N_{n}\partial N_{j}}$$

- > Reweighting signal + background distribution with
 - signal sWeight \rightarrow signal distribution
 - background sWeight \rightarrow background distribution

> See: M. Pvik, F. R. le Diberder. sPlot: a statistical tool to unfold data distributions. Nucl. Instrum. Meth. A 555, 2005.

25.09.2013

> Signal + background distribution with prominent signal feature, e.g. mass distribution

> PDFs for signal and background \rightarrow input in sWeights calculation

> Perform extended maximum likelihood fit to extract expected event yields for species → input in sWeights calculation

> Tools in ROOT and RooFit available to calculate sWeights

> Be careful with MVAs \rightarrow sWeights might be negative

Selection: Preselection efficiency

 $D^0 \to K^0_S (\mathrm{LL}) \, \pi^+ \pi^-$

Selection: Relative trigger efficiency

 $D^0 \to K^0_S (\mathrm{LL}) \, \pi^+ \pi^-$

