
Reproducible computational workflows with
REANA

Tibor Šimko

Department of Information Technology

CERN

EURO-LABS Advanced Training: Open Science and Data Management

Ebernburg, Germany, November 24th–29th 2024

https://indico.gsi.de/event/19808

@tiborsimko 1 / 53

https://indico.gsi.de/event/19808

Computational reproducibility

@tiborsimko 2 / 53

Long-term value of data!

Achim Geiser https://indico.cern.ch/event/1009487

Collaborations publish papers even fifteen
years after data taking ends.

DPHEP https://arxiv.org/abs/1205.4667

JADE data (1979–1986) still unique even forty
years later.

@tiborsimko 3 / 53

https://indico.cern.ch/event/1009487
https://arxiv.org/abs/1205.4667

Long-term value of knowledge?

CMS collaboration

Experimental physics done by large groups
of thousands of physicists.

First LHCb paper arXiv.1008.3105

High turnover of young researchers. Half of
LHCb authors remain after ten years.

@tiborsimko 4 / 53

Half of researchers cannot reproduce their own results

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

@tiborsimko 5 / 53

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

Reproducibility? Reusability? Repeatability? Replicability?

The Turing Way model

https://the-turing-way.netlify.app/reproducible-research/

overview/overview-definitions.html

The PRIMAD model

https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_

v006_i001_p108_s16041.pdf

From “reproducible” to “reusable” analyses
@tiborsimko 6 / 53

https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_v006_i001_p108_s16041.pdf
https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_v006_i001_p108_s16041.pdf

Good practices are long known, but the uptake is slow
G. K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig: “Ten Simple Rules for Reproducible Computational

Research” (2013) https://doi.org/10.1371/journal.pcbi.1003285

1. For every result, keep track of how it was produced

2. Avoid manual data manipulation steps

3. Archive the exact versions of all external programs used

4. Version control all custom scripts

5. Record all intermediate results, when possible in standardized formats

6. For analyses that include randomness, note underlying random seeds

7. Always store raw data behind plots

8. Generate hierarchical analysis output, allowing layers of increasing detail to be inspected

9. Connect textual statements to underlying results

10. Provide public access to scripts, runs, and results

@tiborsimko 7 / 53

https://doi.org/10.1371/journal.pcbi.1003285

Challenges are both sociological and technological

Survey of 1008 researchers from a leading machine-learning conference (NIPS):

V. Stodden, “The Scientific Method in Practice: Reproducibility in the Computational
Sciences” (2010) http://dx.doi.org/10.2139/ssrn.1550193

@tiborsimko 8 / 53

http://dx.doi.org/10.2139/ssrn.1550193

What’s in it for me?

“Your closest collaborator is you six months ago but you don’t reply to email.”

– Karl Broman, “Tools for Reproducible Research”
https://kbroman.org/Tools4RR/

@tiborsimko 9 / 53

https://kbroman.org/Tools4RR/

The elements of analysis preservation

@tiborsimko 10 / 53

Preserving analysis knowledge

Capturing structured analysis knowledge in “actionable” formats

@tiborsimko 11 / 53

I. Data: Preserving (parts of) experimental data

https://doi.org/10.1007/s41781-019-0026-3

Rucio CERN Open Data

Data live in scientific management systems; can be preserved in digital repositories

@tiborsimko 12 / 53

https://doi.org/10.1007/s41781-019-0026-3

II. Code: Preserving research software

−→ −→

←− ←−

https://guides.github.com/activities/citable-code

GitHub ↔ Zenodo bridge to automatically preserve software releases

@tiborsimko 13 / 53

https://guides.github.com/activities/citable-code

III. Computing environment: Containers

ATLAS collaboration

https://hub.docker.com/r/atlas/analysisbase/tags

CMS collaboration

https://gitlab.cern.ch/cms-cloud/cmssw-docker

Container technology helps to encapsulate the computing environment

@tiborsimko 14 / 53

https://hub.docker.com/r/atlas/analysisbase/tags
https://gitlab.cern.ch/cms-cloud/cmssw-docker

III. Computing environment: An example from life sciences

Software changes (Freesurfer 4.3.1, 4.5.0, 5.0.0): 8.8±6.6% (volume) and 2.8±1.3% (thickness)

Operating system changes (macOS 10.5, 10.6): “about factor two smaller”

@tiborsimko 15 / 53

III. Computing environment: Beyond containers

Condition database snapshots for CMS open data on CVMFS

Computing environments may interact with other runtime services; these may need
“encapsulation” as well in order to allow future reuse

@tiborsimko 16 / 53

IV. Computational recipes: One step

input

command

output

environment

A recipe on how to arrive from the input data to the desired output

@tiborsimko 17 / 53

IV. Computational recipes: Many steps (Directed Acyclic Graphs)

Realistic physics analysis workflows may consist of O(1k) computational steps

@tiborsimko 18 / 53

IV. Computational recipes: A variety of computational workflow languages

Serial Yadage CWL Snakemake

@tiborsimko 19 / 53

IV. Computational recipes: Make it actionable

How-to-run recipes in README files are
a good start; but they are not actionable

https://leomurta.github.io/papers/pimentel2019a.pdf

“Out of 863,878 attempted executions
of valid notebooks (...) only 24.11% ex-
ecuted without errors and only 4.03%
produced the same results”

@tiborsimko 20 / 53

https://leomurta.github.io/papers/pimentel2019a.pdf

“Notebooks” and “workflows”: a march of history

“Notebooks”

▶ Started as interactive Python IDE

▶ Been adding kernels (Julia, R)

▶ Been adding explicit parallel DAG
processing (ipyparallel)

▶ Been adding implicit parallel DAG
processing (HTCondor, Spark, Torch)

IDE tools adding batch support −→
,
happy
users

“Workflows”

▶ Started as batch tools

▶ Been standardising “random” glue
scripting practices

▶ Been orchestrating thousands of
batch jobs (HPC, HTC, AWS...)

▶ Been adding IDEs (Arvados, Rabix)

←− Batch tools adding IDE support

@tiborsimko 21 / 53

Summary: Four pillars of reusable computational research

I. Input data

What is your input data?

– input files

– input parameters

III. Computing environment

What is your environment?

– operating system

– database calls

II. Analysis code

Which code analyses it?

– user code

– software frameworks

IV. Computational recipes

Which steps did you take?

– shell commands

– notebooks and workflows

@tiborsimko 22 / 53

REANA

@tiborsimko 23 / 53

Reusable Analyses

https://www.reana.io/

@tiborsimko 24 / 53

https://www.reana.io/

REANA architecture

Respecting diverse habits of diverse
research groups

▶ multiple workflow systems
(CWL, Serial, Snakemake, Yadage)

▶ multiple container technologies
(Docker, Singularity)

▶ multiple compute backends
(Kubernetes, HTCondor, Slurm)

▶ multiple shared storage platforms
(Ceph, CVMFS, EOS, NFS)

@tiborsimko 25 / 53

REANA command-line and web interface

Structure data analysis by means of
declarative workflows

Use command-line and web interfaces to
run analysis on remote compute clusters

@tiborsimko 26 / 53

Data analysis and data production examples

ATLAS https://cds.cern.ch/record/2714064

Data analysis example: ATLAS displaced
jet search reinterpretation

CMS https://github.com/alintulu/reana-demo-JetMETAnalysis

Data production example: CMS jet energy
resolution and corrections

@tiborsimko 27 / 53

https://cds.cern.ch/record/2714064
https://github.com/alintulu/reana-demo-JetMETAnalysis

Example: ATLAS searches for new physics

https://arxiv.org/abs/2403.03494

@tiborsimko 28 / 53

https://arxiv.org/abs/2403.03494

Imperative vs declarative programming

@tiborsimko 29 / 53

Separating “what” from “how”

Scenario: Please give me names of all teenagers from a list of people.

▶ imperative programming: specifying “how” exactly to arrive at results (C)

for (int i = 0; i < sizeof(people) / sizeof(struct people); i++) {

if (people[i].age < 20) {

printf("%s\n", people[i].name)

}

}

▶ declarative programming: specifying “what” is desired (SQL)

SELECT name FROM people WHERE age<20

▶ so far so good; but what if the data structure does not fit in memory?

Useful for separating “problem-domain knowledge” from “operational boilerplate”

@tiborsimko 30 / 53

Example: multi-cascading scatter-gather paradigm

@tiborsimko 31 / 53

Example: job dispatch

steps:

analyse_data:

run: analyse_data.cwl

hints:

reana:

compute_backend: slurmcern

out: [DoubleMuParked2012C_10000_Higgs.root]

analyse_mc:

run: analyse_mc.cwl

hints:

reana:

compute_backend: htcondorcern

out: [Higgs4L1file.root]

make_plot:

run: make_plot.cwl

hints:

reana:

compute_backend: kubernetes

in:

DoubleMuParked2012C_10000_Higgs: >

analyse_data/DoubleMuParked2012C_10000_Higgs.root

Higgs4L1file: >

analyse_mc/Higgs4L1file.root

out: [mass4l_combine_userlvl3.pdf]

Custom workflow hints for hybrid dispatch
@tiborsimko 32 / 53

Reproducibility vs preproducibility

@tiborsimko 33 / 53

Reproducibility ⇌ Preservation

,
physicist

automatised workflows digital repositories

preserve

reuse

use archive

@tiborsimko 34 / 53

“Preproducible” analyses Nature 557 (2018) 613

https://doi.org/10.1038/d41586-018-05256-0

Driving preproducibility via Continuous Integration with source code management systems

@tiborsimko 35 / 53

https://doi.org/10.1038/d41586-018-05256-0

Exercise 1: Using REANA

@tiborsimko 36 / 53

Exercise 1: Modelling event-data distributions (1 of 4)

Scenario

We shall generate data and fit it against a model using RooFit library. This scenario
allows to familiarise yourself with the basic reproducible workflow practices with RE-
ANA.

Follow along

1. In your browser, open https://reana-p4n.aip.de and sign in.

2. In your browser, request your access token.

3. In your terminal, install reana-client. (See next page.)

4. Follow along with the presenter to run your first containerised analysis example!

@tiborsimko 37 / 53

https://reana-p4n.aip.de

Exercise 1: Modelling event-data distributions (2 of 4)

Installing reana-client

First option, use Python virtual enviroment:

$ virtualenv ~/.virtualenvs/reana

$ source ~/.virtualenvs/reana/bin/activate

$ pip install reana-client

Second option, use standalone executable (on GNU/Linux systems):

$ wget https://github.com/reanahub/reana-client/releases/download/0.9.3/

reana-client-0.9.3-x86_64.AppImage

$ chmod u+x ./reana-client-0.9.3-x86_64.AppImage

$ mv ./reana-client-0.9.3-x86_64.AppImage ./reana-client

@tiborsimko 38 / 53

Exercise 1: Modelling event-data distributions (3 of 4)

Clone the demo example

$ git clone --depth 1 -b eurolabs-training-2024 \

https://github.com/reanahub/reana-demo-root6-roofit

$ cd reana-demo-root6-roofit

$ rm -rf .git

Listen to explanations

Stop here and follow along with the presenter to understand and run the analysis using
reana-client.

@tiborsimko 39 / 53

Exercise 1: Modelling event-data distributions (4 of 4)

Problem: Consider that we are not satisfied with the
produced plot and that we would like to change the title
from “Fit example” to “My fit example”.

Task 1: Change the analysis source code and rerun the
analysis to produce the new desired plot.

Task 2: Have you run only those workflow steps that
are really necessary to produce the new plot? If not, how
can you avoid rerunning the (possibly computationally
expensive) data generation steps?

@tiborsimko 40 / 53

Exercise 2: Writing workflows from scratch

@tiborsimko 41 / 53

Exercise 2: Scatter-gather analysis (1 of 10)

Scenario

We shall write a simple workflow from scratch that will analyse nine arXiv papers. We want to
simply know the total word count of these papers.

Note

This example will demonstrate basic parallelisation techniques
in declarative workflow languages and put the concept of
“map-reduce” or “scatter-gather” paradigm in practice.

You would similarly process physics datasets by parallel com-
putations, “scattering” the analysis process (such as produc-
tion of histograms) across samples, before “gathering” the
calculations (such as adding histograms) back.

@tiborsimko 42 / 53

Exercise 2: Scatter-gather analysis (2 of 10)

I. Input data?

The only necessary input parameters are paper arXiv IDs.

papers = [”arXiv:2411.14404” , ”arXiv:2411.14368” ,
”arXiv:2411.14214” , ”arXiv:2411.14033” ,
”arXiv:2411.14012” , ”arXiv:2411.13932” ,
”arXiv:2411.13867” , ”arXiv:2411.13749” ,
”arXiv:2411.13653”]

@tiborsimko 43 / 53

Exercise 2: Scatter-gather analysis (3 of 10)

II. Analysis code?

There is no need to write code this this example.

We shall use the regular Unix tools:

▶ curl to download papers in PDF

▶ podftotext to convert papers to plain text

▶ wc to count words

▶ bc to sum up counts

@tiborsimko 44 / 53

Exercise 2: Scatter-gather analysis (4 of 10)
III. Computing environment?

Let us build a Dockerfile to create a container image with all the tools we need:

$ cat Dockerfile

FROM docker.io/library/ubuntu:24.04

RUN apt-get update -y && \

apt-get install --no-install-recommends -y \

bc=1.07.1-3ubuntu4 \

curl=8.5.0-2ubuntu10.5 \

poppler-utils=24.02.0-1ubuntu9.1 && \

apt-get autoremove -y && \

apt-get clean && \

rm -rf /var/lib/apt/lists/*

$ docker build -t docker.io/tiborsimko/wordcount:1.0 .

Note: (i) versioning of all dependencies; (ii) keeping Docker image layers slim
@tiborsimko 45 / 53

Exercise 2: Scatter-gather analysis (5 of 10)

IV. Workflow? Download papers

A step where the PDF files are downloaded from arXiv based on their IDs.

rule download:

output:

"papers/{paper}.pdf"

container:

"docker://docker.io/tiborsimko/wordcount:1.0"

shell:

"mkdir -p papers && cd papers && \

curl -ko {wildcards.paper}.pdf

https://arxiv.org/pdf/{wildcards.paper}"

Note: usage of “wildcards” to make Snakemake rules general

@tiborsimko 46 / 53

Exercise 2: Scatter-gather analysis (6 of 10)

IV. Workflow? Convert papers

A step where the PDF files are converted to plain text.

rule convert:

input:

"papers/{paper}.pdf"

output:

"texts/{paper}.txt"

container:

"docker://docker.io/tiborsimko/wordcount:1.0"

shell:

"mkdir -p texts && pdftotext papers/{wildcards.paper}.pdf \

texts/{wildcards.paper}.txt"

Note: uses now-familiar combination of “wildcards” again

@tiborsimko 47 / 53

Exercise 2: Scatter-gather analysis (7 of 10)

IV. Workflow? Count words

A step where the words are counted in the plain text files.

rule count:

input:

"texts/{paper}.txt"

output:

"counts/{paper}.txt"

container:

"docker://docker.io/tiborsimko/wordcount:1.0"

shell:

"mkdir -p counts && wc -w {input} | cut -d’ ’ -f1 > {output}"

Note: the “map” part of map-reduce; the “scatter” part of scatter-gather

@tiborsimko 48 / 53

Exercise 2: Scatter-gather analysis (8 of 10)
IV. Workflow? Sum counts

A step where the counted words are summed up across files.

rule sum:

input:

expand("counts/{paper}.txt", paper=papers)

output:

"wordcount.txt"

container:

"docker://docker.io/tiborsimko/wordcount:1.0"

shell:

"cat {input} | paste -s -d+ | bc > {output}"

Note: the role of “expand” to express a list of dependencies

Note: the “reduce” part of map-reduce; the “gather” part of scatter-gather

@tiborsimko 49 / 53

Exercise 2: Scatter-gather analysis (9 of 10)
Tying it all up

This simple example analysis can be described in the following reana.yaml

inputs:

files:

- Snakefile

workflow:

type: snakemake

file: Snakefile

outputs:

files:

- wordcount.txt

Note: All the details “live” in the Snakefile that we have been composing.

Hint: If time presses, download the solution from
https://github.com/tiborsimko/reana-demo-wordcount

@tiborsimko 50 / 53

https://github.com/tiborsimko/reana-demo-wordcount

Exercise 2: Scatter-gather analysis (10 of 10)

Running the example

The analysis example can be run as before

$ reana-client create -w wordcount

$ reana-client upload -w wordcount

$ reana-client start -w wordcount

...

$ reana-client status -w wordcount

$ reana-client logs -w wordcount

$ reana-client ls -w wordcount

$ reana-client download -w wordcount

Task 1: Modify the example to calculate the number of lines rather than words.

@tiborsimko 51 / 53

Conclusions

@tiborsimko 52 / 53

Conclusions

▶ driving reuse through preproducibility

▶ data + code + environment + workflow
→ reproducible analyses

▶ technology challenges: large containers, complex
computational workflows

▶ sociology challenges: declarative programming
paradigm, publish-or-perish culture

▶ synergies with computational reproducibility needs
in astronomy, life sciences

https://www.reanahub.io https://github.com/reanahub

@tiborsimko 53 / 53

https://www.reanahub.io
https://github.com/reanahub

