Reproducible computational workflows with

REANA

Tibor Simko

Department of Information Technology
CERN

EURO-LABS Advanced Training: Open Science and Data Management
Ebernburg, Germany, November 24th-29th 2024

https://indico.gsi.de/event/19808

Qtiborsimko 1/53

https://indico.gsi.de/event/19808

O@tiborsimko

Computational reproducibility

2/53

Long-term value of data!

2020
MU L I

ZEUS published

20 -

10

end of data]

o | | i

 anticipated |

0 HERA 1a, data 1991-1995
HERA Ib, data 1996-2000.
[0 HERA 11, data 2003-2007.

B data preservation mode |
202021 active analyses

2202230 furure topies

since end of DESY funding 2014:
2015-20: 14 papers,

1 with > 500 citations
2021: expect 2-4 papers
long term: ~1-2 papers/year -> ~2030
expect ~10% of total ZEUS output
~80-90% of these would never exist
without dedicated data preservation

i
1995 2000 2005 2010 2015 2020

2025 2030

Achim Geiser https://indico.cern.ch/event/1009487

Collaborations publish papers
years after data taking ends.

@tiborsimko

even fifteen

0.13

0.12

011

0.1

} JADENNLO
% ALEPH NNLO E

.)
“, 1T,MyBy,By,C,yy

= ag(m,)=0.1210:0.0061

10 102
Vs[GeV]

DPHEP https://arxiv.org/abs/1205.4667

JADE data (1979-1986) still unique even forty

years later.

3/53

https://indico.cern.ch/event/1009487
https://arxiv.org/abs/1205.4667

Long-term value of knowledge?

e

CMS collaboration First LHCb paper arXiv.1008.3105

Experimental physics done by large groups High turnover of young researchers. Half of
of thousands of physicists. LHCb authors remain after ten years.

Qtiborsimko 4/53

Half of researchers cannot reproduce their own results

HAVE YOU FAILED TO REPRODUCE
AN EXPERIMENT?

Most scientists have experienced failure to reproduce results.

® Someone else’'s & My own

Chemistry

Biology [°

Physics and
engineering |

Medicine

Earth and
environmen

Other

0 20 20 60 20 100%

https://www.nature.com/news/1-500-scientists-1ift-the-1lid-on-reproducibility-1.19970

@tiborsimko

5/53

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970

Reproducibility? Reusability? Repeatability? Replicability?

The Turing Way model The PRIMAD model

Same Different Rapt Dotemiien)
Param. Sweep x Robustness / Sensitivity
Generaze w x Appicabity across diferent satings
o Ll Portabilty a
= . X Recode e ;
lxiiy. sdopter
& Reproducible Replicable s o e U
dforont pproach
Re-use . Apply code in different settings,
Re-purpose
b= Independent x , Sufficiency of information, independent
@ . (orthogonal) vertation
K Robust Generalisable
o
https://the-turing-vay.netlify.app/reproducible-research/ https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_
overview/overview-definitions.html V006_1001_p108_s16041 . pdf

From “reproducible” to “reusable” analyses

Qtiborsimko 6/53

https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://the-turing-way.netlify.app/reproducible-research/overview/overview-definitions.html
https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_v006_i001_p108_s16041.pdf
https://drops.dagstuhl.de/opus/volltexte/2016/5817/pdf/dagrep_v006_i001_p108_s16041.pdf

Good practices are long known, but the uptake is slow

G. K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig: “Ten Simple Rules for Reproducible Computational
Research” (2013) nttps://doi.org/10.1371/journal.pcbi. 1003285

For every result, keep track of how it was produced

Avoid manual data manipulation steps

Archive the exact versions of all external programs used

Version control all custom scripts

Record all intermediate results, when possible in standardized formats
For analyses that include randomness, note underlying random seeds
Always store raw data behind plots

Generate hierarchical analysis output, allowing layers of increasing detail to be inspected

© o N ok W=

Connect textual statements to underlying results

,_.
©

Provide public access to scripts, runs, and results

Qtiborsimko 7/53

https://doi.org/10.1371/journal.pcbi.1003285

Challenges are both sociological and technological

Survey of 1008 researchers from a leading machine-learning conference (NIPS):

Table 12: Most Influential Reasons Not to Share Code, by Non-Sharer and Sharer

Table 11: Most Influential Reasons Not to Share Data, by Non-sharer and Sharer Closed Open p-value
‘ for diff
Closed Open f(;:’?il“:; The time it takes to clean up and document for release 82.22% 71.43% 0.2363
The time it @akes © document for release 57.95% 5238% 0.6818 Dealing with questions from users about the code 54.44% 47.62% 0.5863
.95% 38% 0. Py . -
The possibility that your dataset may be used without citation ~ 50.00% 28.57% 00342 Lhe possibility that your code may be used without citation 47.19% 37.71% 0.2964
Legal bz;nlﬁ:rc such as copyright - 42‘.‘7% 40'00% 1.0000 The possibility of patents, or other IP constraints 38.89% 40.48% 1.0000
The potential loss of future publications using these data 39.33% 30.95% 0.4629 Compcmmfs may get an advama_gc . . . 34'44:& 23'81:/“ 03040
Dealing with questions from users about the data 3864% 26.19% 02310 Lhepotential loss of future publications using this code 3111% 28.57% 09264
The time it takes to verify privacy or other admin data concerns ~ 38.20% 41.46% 08724~ 1he code might be used in commercial applications 2889% 23.81% 06888
Competitors may get an advantage 37.08% 30.95% 0.6245 Legal barriers, fuch as copyright 28.81% 44.00% 02727
The web doesn’t allow me to track others use of the data 30.68% 14.28% 0.0729 The web doesn’t allow me to track others use of the code 26.67% 14.29% 0.1745
Technical limitations, ie. webspace platform space constraints ~ 29.54% 26.19% 0.8504 Technical limitations, ie. webspace platform space constraints 23.33% 14.29% 03327
Whether there is intense competition in the topic 2955% 16.67% 0.1731 Availability of other code that might substitute for your own ~ 22.22% 17.07% 0.6580
‘Whether you put in a large amount of work building the dataset ~ 24.72% 26.19% 1.0000 Whether you put in a large amount of work building the code 22.22% 14.29% 0.4049
Availability of other data that might substitute for your own 12.36% 19.05% 0.4540 Whether there is intense competition in the topic 15.56% 21.43% 0.5604
<10% <10% <10% <10%

V. Stodden, “The Scientific Method in Practice: Reproducibility in the Computational
Sciences” (2010) http://dx.doi.org/10.2139/ssrn. 1550193

Qtiborsimko 8/53

http://dx.doi.org/10.2139/ssrn.1550193

What's in it for me?

“Your closest collaborator is you six months ago but you don't reply to email.”

— Karl Broman, “Tools for Reproducible Research”
https://kbroman.org/Tools4RR/

Qtiborsimko 9/53

https://kbroman.org/Tools4RR/

O@tiborsimko

The elements of analysis preservation

10/53

Preserving analysis knowledge

formats
reuse provenance

low level high level workflows validation
TECHNICAL METADATAl | PHYSICS KNOWLEDGE | | USAGE | PRESERVATION

environment

ANALYSIS

physicist

Capturing structured analysis knowledge in “actionable” formats

O@tiborsimko

11/53

|. Data: Preserving (parts of) experimental data

open v
Clients cu Python JavaScript ‘
Simulated dataset QCD_Pt_170_250_EMEnriched_TuneZ2star_8TeV_pythia6 in
AODSIM format for 2012 collision data
Server Authentication RESTAPY Web Ul storage JQCD.P1_170250,EMEnriche,TunZ2str, ST syistSurimert2_ORS3X7U A1 STARTS3 X7t /A0DSIM, CHS colsborstion
it 5 s oo or7) st 70,35 s Tzt £11. % i AODSI forma for 2072 ctsion
RSE 1 e
c RSE 2 s | cco Lo
ore Accounts Rules Data Identifiers Authorisation e et
Description
Metadata Quotas Scopes 3 ;
Simulatd detase. QCD.PL170.250 ENErichd TunsZ2star eyt in AODSI ormat for 2012 cllsion it
Transfer Tool See the descriton o the smulated datasl names n: At CHS sinuiaed datase s
Tool 1 hese s o ntin 2z
Daemons Transfers Rules Rebalancing Messaging S
Dataset characteristics
Deletion Consistency Dynamic placement Tracing 30125260 sirts. 26958 e 9.6 T8 I 03l

System details
Recommented ol s foranlsl: SARTS3 V27:A1

Recommende rlezse for anaysi: M5 332

How were these data generated?

Transactional
RDBMS

Thse data weregeneratd i several teps (e lso CWS Nonte Crl producton ove

step st

B produdion st (pcvie
s Generstr parametrs {prei) (1)
i st JQCD_P 170,250 EMEnicna Tuns?2star ATSV_ s Summart2-STARTSO. V301 [GENSTM

https://doi.org/10.1007/s41781-019-0026-3

Rucio CERN Open Data

Data live in scientific management systems; can be preserved in digital repositories

Qtiborsimko 12 /53

https://doi.org/10.1007/s41781-019-0026-3

lI. Code: Preserving research software

2000 Em— Cm—
=) == == Latest release =
o " . O 1,159

muwaskom/seaborn: v0.10.1 (April 2020) 2200

— Svo.10.1 —

O dd4efds GitHub
peese OpenAIRE
!;‘H . : i
gaioee0 : -
oo st gt isstston —
‘L \)"’ 'J — — E
foa

https://guides.github.com/activities/citable-code

GitHub < Zenodo bridge to automatically preserve software releases

Qtiborsimko 13/53

https://guides.github.com/activities/citable-code

IIl. Computing environment: Containers

cmssw-docker

atlas/analysisbase 5

ATLAS collaboration CMS collaboration

https://hub.docker.com/r/atlas/analysisbase/tags https://gitlab.cern.ch/cms-cloud/cmssw-docker

Container technology helps to encapsulate the computing environment

Qtiborsimko 14 /53

https://hub.docker.com/r/atlas/analysisbase/tags
https://gitlab.cern.ch/cms-cloud/cmssw-docker

[Il. Computing environment: An example from life sciences

The Effects of FreeSurfer Version, Workstation Type, and Macintosh
Operating System Version on Anatomical Volume and Cortical
Thickness Measurements

Ed H. B. M. Gronenschild @, Petra Habets, Heidi | L. Jacobs, Ron Mengelers, Nico Rozendaal, Jim van Os, Machteld Marcelis

Published: June 1, 2012 « DOL: 10.1371/jounal. pone 0038234

Software changes (Freesurfer 4.3.1, 4.5.0, 5.0.0): 8.846.6% (volume) and 2.8+1.3% (thickness)
Operating system changes (macOS 10.5, 10.6): “about factor two smaller”

Qtiborsimko 15/53

1. Computing

Computing environments may interact with other runtime services; these may need

@tiborsimko

environment: Beyond containers

» s -1 /cvmfs/cms-opendata-conddb. cern.ch

total 1655262

drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
drwxr-xr-x.
druxr-xr-x.

2

I L A R N SN

cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs

cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs
cvmfs

24

24

366
365
365

3|

248
282
394
296
1002414080
691593216
82944
82944
119888
120832
120832
64512
72704
84992
130048
89088

Jan
Feb
Jun
Nov
Jun
Oct
Nov
Jan
Jun
Nov
Oct
Oct
Jan
Feb
Jun
Nov
Jun
Oct
Nov
Jan
Jun
Nov

21
22
21
29
23
20

9
21
21
30
31
31
21
22
21
29
23
20

9
21
21
30

2016
2016
2017
2017
2017
2017
20818
2016
2017
20818
2018
2018
2016
2016
2017
2017
2017
2017
2018
2016
2017
2018

FT_53_LV5_AN1
FT_53_LV5_AN1_RUNA
FT53_V21A_AN6
FTS3_V21A_AN6_FULL
FT53_V21A_ANG_RUNC

FT_R_42 V1A

START42_V17B

STARTS3_LVGA1

STARTS3_V27

STARTS3_V7N
102X_upgrade2018_design_v9.db
80X_mcRun2_asymptotic_2016_TrancheIV_vs.db
FT_53_LV5_AN1.db
FT_53_LV5_AN1_RUNA.db
FT53_V21A_ANG.db
FT53_V21A_AN6_FULL.db
FT53_V21A_AN6_RUNC.db

FT_R_42 v1eA.db
START42_V178B.db
STARTS3_LV6AL.db
STARTS3_v27.db

STARTS3_V7N.db

Condition database snapshots for CMS open data on CVMFS

“encapsulation” as well in order to allow future reuse

16 /53

IV. Computational recipes: One step

‘ command %—{environment

A recipe on how to arrive from the input data to the desired output

Qtiborsimko 17 /53

IV. Computational recipes: Many steps (Directed Acyclic Graphs)

% 4 3 2 1 0 1 2 3 4

Realistic physics analysis workflows may consist of O(1k) computational steps

Qtiborsimko 18 /53

I\V. Computational

o

command,
outputy

command,

outputy

—— -

outputy_1

command,

il

Serial

O@tiborsimko

recipes: A variety of computational

Yadage

| Workflow Inputs
i

i

i -
meweight || nevents
E ig —-
even

[weight

inputile /varat

o]

:
:
i

Workflow Outputs

|
|
L.

CWL

workflow languages

scram

N

’ 1

H

| analyze data | | analyze_mc
\

’
— /
Chalonninbalote g
\,

!]
i make_plot :
________ o
Ko 'l' =
i

Snakemake

19/53

V. Computational recipes: Make it actionable

How to run this?

Get the software stack

skim the datasets

Produce histograms

Make plots

How-to-run recipes in README files are
a good start; but they are not actionable

O@tiborsimko

A Large-scale Study about Quality and
Reproducibility of Jupyter Notebooks

Jodo Flipe Pimentel”, Leo and Julsns Frine|

https://leomurta.github.io/papers/pimentel2019a.pdf

“Out of 863,878 attempted executions
of valid notebooks (...) only 24.11% ex-
ecuted without errors and only 4.03%
produced the same results”

20 /53

https://leomurta.github.io/papers/pimentel2019a.pdf

“Notebooks” and “workflows”: a march of history

“Notebooks” “Workflows”
> Started as interactive Python IDE » Started as batch tools
» Been adding kernels (Julia, R) » Been standardising “random” glue
» Been adding explicit parallel DAG scripting practices
processing (ipyparallel) » Been orchestrating thousands of
» Been adding implicit parallel DAG batch jobs (HPC, HTC, AWS...)
processing (HTCondor, Spark, Torch) » Been adding IDEs (Arvados, Rabix)
IDE tools adding batch support — Spy <— Batch tools adding IDE support
users

Qtiborsimko 21/53

Summary: Four pillars of reusable computational research

O@tiborsimko

l. Input data

What is your input data?
— input files
— input parameters

I1l. Computing environment

What is your environment?
— operating system

— database calls

Il. Analysis code

Which code analyses it?
— user code

— software frameworks

IV. Computational recipes

Which steps did you take?
— shell commands

— notebooks and workflows

22/53

@tiborsimko

REANA

23 /53

Reusable Analyses

reana

Reproducible research data analysis platform

Flexible Scalable Reusable Free
Run many computational Support for remote compute Containerise once, reuse Free Software. MIT licence.
workflow engines. clouds elsewhere. Cloud-native. Made with 4 at CERN,

g y 5' H'C.Omifﬁ

kubernetes

&® ©

https://www.reana.io/

@tiborsimko

24 /53

https://www.reana.io/

REANA architecture

A—=
Respecting diverse habits of diverse

scientist 1. input data?
l research groups

2. analysis code?
3. compute environment?
4. analysis workflow?

>
monitor | workiow execution controter w » multiple workflow systems
sllocate | star v g (CWL, Serial, Snakemake, Yadage)
omter [Sanimte » multiple container technologies
Jrmsten) repent (Docker, Singularity)
<> d job .
alocation execution 3 » multiple compute backends
QF\/ (Kubernetes, HT Condor, Slurm)
5 ile system .
a —¥ e » multiple shared storage platforms
hi=0s [~ &a (Ceph, CVMFS, EOS, NFS)
@ceph == ™ HTCONAS

25 /53

@tiborsimko

REANA command-line and web interface

version: 0.6.0
inputs:
Tiles:
- code/gendata.C
- code/fitdata.C
parameters:
events: 20000
data: results/data.root

plot: results/plot.png
workflow:

type: serial
specification
steps:

- name: gendata
environment: 'reanahub/reana-env-root6:6.18.64
commands:

mkdir -p results & reot -b -g 'code/gendata.C(S{events},"${data}")"
- name: fitdata

environment: 'reanahub/reana-env-root6:6.18.64
commands:

root -b -q 'code/fitdata.C("${data}", "${plot}")"
outputs:

files:

- results/plot.png

Structure data analysis by means of
declarative workflows

@tiborsimko

Use command-line and web interfaces to
run analysis on remote compute clusters

26 /53

Data analysis and data production examples

95% CL Upper Limit on o x B [pb]

ATLAS https://cds.cern.ch/record/2714064

Data analysis example:
jet search reinterpretation

@tiborsimko

S

-—
ssssssssssbbveBEEBSS
Se——

13Tev

T

10°F]
ArLASPrenmmary oaTev | 8 13
107 [= RECAST resu. g £, solcion (5.0%') WExp £ 10,20 1 g CcMs QcD Monte Carlo
1105 - M5 dspaces s resun @) (961 ') —Obs. d 2 1.2 wat Anti-k; R=0.4, PF+CHS
10° g & 1 E
F | %
o' e 1 09f- E
10°F \ | 08
or ot 1 o7t s
i 1 o8 A3l <25
f: e 02850 G, <sssn) 05 » 25<hl<30
107"k 3 04f ~-30<fl<50]
‘ 10 G 20 00200 100000
7 proper decay length (c) [m] TR (Gev)

CMS https://github.com/alintulu/reana-demo-JetMETAnalysis

Data production example: CMS jet energy
resolution and corrections

ATLAS displaced

27 /53

https://cds.cern.ch/record/2714064
https://github.com/alintulu/reana-demo-JetMETAnalysis

Example: ATLAS searches for new physics

DXAOD._to_ntuple_mel6a_0 DXAOD._to_ntuple_me16e_0 DrAOD.to_ntuple_mc16d_0

T~ /. —

Figure 2. A typical pMSSM workflow. The computational runtime is about 10 minutes without sys-
tematics (test payload) and about 10 hours with all systematics (real payload).

45201816 submit200 se€p00 total1000

\ Arusconomon @

Figure 1. A screenshot of the ATLAS SUSY group analyses preserved on GitLab. Each repository is
labeled with the internal ATLAS analysis identifier and contains both workflow files and additional data
files needed for the computational processing.

Figure 8. A scalability test submitting 200 workflows every 10 minutes. A cluster with 448 cores (left)
cannot keep up with the load. A cluster with 1072 cores (right) can comfortably hold the incoming
workload.

https://arxiv.org/abs/2403.03494

Qtiborsimko 28 /53

https://arxiv.org/abs/2403.03494

O@tiborsimko

Imperative vs declarative programming

29 /53

Separating “what” from “how"
Scenario: Please give me names of all teenagers from a list of people.

> imperative programming: specifying "how” exactly to arrive at results (C)

for (int i = 0; 1 < sizeof(people) / sizeof(struct people); i++) {
if (peoplel[i].age < 20) {
printf ("%s\n", people[i].name)
}
}

» declarative programming: specifying “what” is desired (SQL)
SELECT name FROM people WHERE age<20

» so far so good; but what if the data structure does not fit in memory?

Useful for separating “problem-domain knowledge” from “operational boilerplate”

@tiborsimko 30/53

Example: multi-cascading scatter-gather paradigm

input data set

input[7]

..... e - A\ A . stages:
- name: filter1
. dependencies: [init]
. scheduler:
scheduler_type: multistep-stage
parameters:
input: {stages: init, output: input, unwrap: true}
batchsize: 2
Scatter:
“hethod: zip
arameters: [input
step: {$ref: steps.yaml#/filter}

.............. o aEen 1itera
dependencies: [filter1]
scheduler:

scheduler_type: multistep-stage
parameters:
input: {stages: filterl, output: output
unwrap:true}
batchsize: 2
. . scatter:
.......................... Pl
parameters: [input]
step: {$ref: steps.yaml#/filter}
- name: filter3
dependencies: [filter2]
scheduler:
scheduler_type: singlestep-stage
parameters:
input: {stages: 'filter2', output: output}
step: {$ref: steps.yaml#/filter}

Qtiborsimko 31/53

Example: job dispatch

steps:
analyse_data:
run: analyse_data.cwl

hints:
reana:
compute_backend: slurmcern
out:” [DoubleMuParked2012C_10000_Higgs.root]

analyse_mc:
run: analyse_mc.cwl
hints:
reana:
compute_backend: htcondorcern
out: [Higgs4Lifile.root]
make_plot:
run: make_plot.cwl
hints:
reana:
compute_backend: kubernetes
in:
DoubleMuParked2012C_10000_Higgs: >
analyse_data/DoubleMuParked2012C_10000_Higgs.root
Higgs4Lifile: >
analyse_mc/Higgs4L1file.root
out: [mass4l_combine_userlvl3.pdf]

Custom workflow hints for hybrid dispatch

O@tiborsimko

Job controller

DoubleMuParkea2012C_10000_Higgs.root

y

Kubernetes

REST AP \,

I/‘\
/_/

myschedd

sbatch

HTCondor

Slurm

32/53

Reproducibility vs preproducibility

33/53

Reproducibility = Preservation
preserve

D

cana use archive ~
- @ B bl A=
i v o >
) physicist
automatised workflows digital repositories

N

Qtiborsimko 34 /53

“Preproducible” analyses

commits

@) analysis

code

reana.yanl
workflow.yaml

. GitLab .
H Source *
A GitLab [« |5 i @
. manager |
: builds .
new (® pulls image
image
Docker (@) calls back with status
registry

@ GitLab

integration

O
)

Researcher

reana

keeps all runs
and outputs

Nature 557 (2018) 613

Before reproducibility must come
preproducibility

@

Instead of arguing about whether results hold up, let's push to provide
enough information for others to repeat the experiments, says Philip
Stark.

https://doi.org/10.1038/d41586-018-05256-0

® - checks output plots
- triggers new runs

(® runs jobs

: Compute backends

* Kubernetes HTCondor Slurm

Driving preproducibility via Continuous Integration with source code management systems

@tiborsimko

35/53

https://doi.org/10.1038/d41586-018-05256-0

Exercise 1: Using REANA

O@tiborsimko

Exercise 1: Modelling event-data distributions (1 of 4)

Scenario

We shall generate data and fit it against a model using RooFit library. This scenario

allows to familiarise yourself with the basic reproducible workflow practices with RE-
ANA.

Follow along

In your browser, open https://reana-p4n.aip.de and sign in.
In your browser, request your access token.

In your terminal, install reana-client. (See next page.)

Sl A

Follow along with the presenter to run your first containerised analysis example!

Qtiborsimko 37/53

https://reana-p4n.aip.de

Exercise 1: Modelling event-data distributions (2 of 4)

Installing reana-client

First option, use Python virtual enviroment:

$ virtualenv ~/.virtualenvs/reana
$ source ~/.virtualenvs/reana/bin/activate
$ pip install reana-client

Second option, use standalone executable (on GNU/Linux systems):

$ wget https://github.com/reanahub/reana-client/releases/download/0.9.3/
reana-client-0.9.3-x86_64.AppImage

$ chmod u+x ./reana-client-0.9.3-x86_64.AppImage

$ mv ./reana-client-0.9.3-x86_64.AppImage ./reana-client

Qtiborsimko 38/53

Exercise 1: Modelling event-data distributions (3 of 4)

Clone the demo example

$ git clone --depth 1 -b eurolabs-training-2024 \
https://github.com/reanahub/reana-demo-root6-roofit

$ cd reana-demo-root6-roofit

$ rm -rf .git

Listen to explanations

Stop here and follow along with the presenter to understand and run the analysis using
reana-client.

Qtiborsimko 39/53

Exercise 1: Modelling event-data distributions (4 of 4)

Problem: Consider that we are not satisfied with the Fit example

produced plot and that we would like to change the title
from “Fit example” to "My fit example”.

o
=3
k=3

T

i

Events/(0,1)

©
=3
=3

T T

Task 1: Change the analysis source code and rerun the 600
analysis to produce the new desired plot.
400
Task 2: Have you run only those workflow steps that
are really necessary to produce the new plot? If not, how i
can you avoid rerunning the (possibly computationally B B I S
expensive) data generation steps? ’

200

Qtiborsimko 40/53

@tiborsimko

Exercise 2: Writing workflows from scratch

41/53

Exercise 2: Scatter-gather analysis (1 of 10)

Scenario

We shall write a simple workflow from scratch that will analyse nine arXiv papers. We want to
simply know the total word count of these papers.

Note

This example will demonstrate basic parallelisation techniques
in declarative workflow languages and put the concept of
“map-reduce” or “scatter-gather” paradigm in practice.

You would similarly process physics datasets by parallel com-
putations, “scattering” the analysis process (such as produc-
tion of histograms) across samples, before “gathering” the
calculations (such as adding histograms) back.

Qtiborsimko 42 /53

Exercise 2: Scatter-gather analysis (2 of 10)

l. Input data?

The only necessary input parameters are paper arXiv IDs.

papers = ["arXiv:2411.14404", "arXiv:2411.14368",
"arXiv:2411.14214" , "arXiv:2411.14033",
"arXiv:2411.14012", "arXiv:2411.13932",
"arXiv:2411.13867", "arXiv:2411.13749" ,
"arXiv:2411.13653" |

Qtiborsimko 43/53

Exercise 2: Scatter-gather analysis (3 of 10)

Il. Analysis code?

There is no need to write code this this example.
We shall use the regular Unix tools:

P> curl to download papers in PDF

> podftotext to convert papers to plain text

» wc to count words

» bc to sum up counts

Qtiborsimko 44 /53

Exercise 2: Scatter-gather analysis (4 of 10)

I1l. Computing environment?

Let us build a Dockerfile to create a container image with all the tools we need:

$ cat Dockerfile
FROM docker.io/library/ubuntu:24.04
RUN apt-get update -y && \
apt-get install --no-install-recommends -y \
bc=1.07.1-3ubuntud \
curl=8.5.0-2ubuntul0.5 \
poppler-utils=24.02.0-1ubuntu9.1 && \
apt-get autoremove -y && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*

$ docker build -t docker.io/tiborsimko/wordcount:1.0 .

Note: (i) versioning of all dependencies; (ii) keeping Docker image layers slim

@tiborsimko

45/53

Exercise 2: Scatter-gather analysis (5 of 10)

IV. Workflow? Download papers

A step where the PDF files are downloaded from arXiv based on their IDs.

rule download:
output:
"papers/{paper}.pdf"
container:
"docker://docker.io/tiborsimko/wordcount:1.0"
shell:
"mkdir -p papers && cd papers && \
curl -ko {wildcards.paper}.pdf
https://arxiv.org/pdf/{wildcards.paper}"

Note: usage of “wildcards” to make Snakemake rules general

@tiborsimko 46 /53

Exercise 2: Scatter-gather analysis (6 of 10)
IV. Workflow? Convert papers

A step where the PDF files are converted to plain text.

rule convert:
input:
"papers/{paper}.pdf"
output:
"texts/{paper}.txt"
container:
"docker://docker.io/tiborsimko/wordcount:1.0"
shell:
"mkdir -p texts && pdftotext papers/{wildcards.paper}.pdf \
texts/{wildcards.paper}.txt"

Note: uses now-familiar combination of “wildcards” again

@tiborsimko 47 /53

Exercise 2: Scatter-gather analysis (7 of 10)

IV. Workflow? Count words

A step where the words are counted in the plain text files.

rule count:
input:
"texts/{paper}.txt"
output:
"counts/{paper}.txt"
container:
"docker://docker.io/tiborsimko/wordcount:1.0"
shell:
"mkdir -p counts && wc -w {input} | cut -d’ ’ -f1 > {outputl}"

Note: the “map” part of map-reduce; the “scatter” part of scatter-gather

@tiborsimko

48/53

Exercise 2: Scatter-gather analysis (8 of 10)

IV. Workflow? Sum counts

A step where the counted words are summed up across files.

rule sum:
input:
expand ("counts/{paper}.txt", paper=papers)
output:
"wordcount.txt"
container:
"docker://docker.io/tiborsimko/wordcount:1.0"
shell:
"cat {input} | paste -s -d+ | bc > {output}"

Note: the role of “expand” to express a list of dependencies

Note: the “reduce” part of map-reduce; the “gather” part of scatter-gather

@tiborsimko

49/53

Exercise 2: Scatter-gather analysis (9 of 10)
Tying it all up

This simple example analysis can be described in the following reana.yaml

inputs:
files:
- Snakefile
workflow:
type: snakemake
file: Snakefile
outputs:
files:
- wordcount.txt

Note: All the details “live” in the Snakefile that we have been composing.

Hint: If time presses, download the solution from
https://github.com/tiborsimko/reana-demo-wordcount

@tiborsimko 50/53

https://github.com/tiborsimko/reana-demo-wordcount

Exercise 2: Scatter-gather analysis (10 of 10)

Running the example

The analysis example can be run as before

$ reana-client
$ reana-client
$ reana-client

reana-client
reana-client
reana-client
reana-client

©hH hH P LH .

create -w wordcount
upload -w wordcount
start -w wordcount

status -w wordcount
logs -w wordcount

1s -w wordcount
download -w wordcount

Task 1: Modify the example to calculate the number of lines rather than words.

O@tiborsimko

51/53

@tiborsimko

Conclusions

52 /53

Conclusions

» driving reuse through preproducibility

» data + code + environment + workflow

— reproducible analyses
» technology challenges: large containers, complex ' $
: REANA ,
computational workflows i) wet
> soaol.ogy challejnges: dec.:laratlve programming s | L Z A
paradigm, publish-or-perish culture @ceph < e
» synergies with computational reproducibility needs o :’ &
in astronomy, life sciences HICona -
@ nttps://www.reanahub. io © https://github.com/reanahub

Qtiborsimko 53/53

https://www.reanahub.io
https://github.com/reanahub

