
From version control
to GitLab
EURO-LABS Advanced Training

Open Science and Data Management

 Content
● Version Control

– What is it?
– How can it help you?

● GIT
– Under the hood
– Branching and Merging

● GitLab
– GUI
– Workflows

 Underlying Problem
● How do you keep track of changes made to your files?

– Do the bookkeeping yourself.
Create new files every time you do a change.

● Will create a huge number of files which are complicated to organize
● May blow up your disk space
● No metadata information if not saved separately

● How do you communicate changes to your
collaborators?
– Send changes by mail?
– Work all in the same account?

● Use a system which hides all the complications from the
user

 Version Control
● A version control system (VCS) manages documents over time
● A VCS keeps the history of all changes

● Many versions of every file
● Allows to go back to an older version of the file
● Show differences between different versions
● Log messages name the reason for changes
● ...

● A VCS coordinates the work of multiple authors
● Avoid conflicts between the developments of different developers

● A VCS allows user authentication and controlled access to files
● Read/Write permissions for user and groups
● Permissions can apply for repo, directory, or file (depend on VCS)

 Which Information is Stored

● The Reason (Commit Comment) should be meaningful and explanatory !!
● Don’t say how you have changed but why and what

● Bad: bug-fix
● Good: Correctly initialize variable x because of division by zero

● Separate subject from body with a blank line
● Limit the subject line to 50 characters
● Wrap the body at 72 characters

Content what has changed?
Date when did it change?
Author who changed it?
Reason why has it changed?

VCS does
this

you enter
this

 Local Version Control System

● Store differences between
versions (deltas) for each file
in a special format

● Less error prone than
manually managing file
versions

● E.g. RCS

 Central Version Control System
● Allows a collaboration of

different developers
● Fine grained access

control is possible
● Central Server is a single

point of failure
● Commits went always to

the central server
● If the server is locally on

your computer it works
as local VCS

● E.g. CVS or Subversion

 Distributed Version Control System
● Each computer has a copy of the

full history
● Commits are done first locally

which allows to save the full
history of changes locally

● No single point of failure since
every client copy is a full backup

● Depending on workflow
synchronization can be
complicated

● Most workflows use a central
server

● E.g. Git, Mercurial

 GIT
● Basic commands
● GIT Internal
● Branching
● Merging

– Merge commits vs. Rebase

 GIT
● Do you know how many GIT subcommands exist?

– e.g. git add

 GIT commands
● There are 145 git commands

– Information from a talk by Scott Chacon
● Co-founder of GitHub
● https://www.youtube.com/watch?v=aolI_Rz0ZqY

https://www.youtube.com/watch?v=aolI_Rz0ZqY

 GIT commands
● There are 145 git commands

– Information from a talk by Scott Chacon
● Co-founder of GitHub
● https://www.youtube.com/watch?v=aolI_Rz0ZqY

● 82 Basic commands
– 44 main commands (add, commit, push, pull, …)
– 11 manipulators (config, reflog, replace, …)
– 17 interrogators (blame, fchk, rerere, …)
– 10 interactors (send-email, p4, svn, …)

● 63 plumbing (low level) commands
– Check the presentation

https://www.youtube.com/watch?v=aolI_Rz0ZqY

 GIT commands
● GIT add new commands but doesn’t remove the old

ones
– Available commands depend on the used GIT version
– If you are working with various git versions you may know both

● Often different commands do the same thing
– Revert changes to a file

● git checkout -- <file> and git restore <file>

– Change the working branch
● git checkout <branchname> and git switch <branchname>

 Workflow
● Local and central version control systems define a more

or less fixed workflow
● With a distributed version control system many different

workflows become possible
● Git is a very powerful toolbox to implement many

different workflows
– Good: very powerful and flexible
– Bad: very powerful and flexible

● Before starting with a collaborative project define the
used workflow

 Repository
● The “Central Repository” is the official source of the project

on a central server
– GitHub or GitLab are well known repository providers

● Allow to implement workflows
– Everything else isn’t an official version !!!

● A “Fork” is a private clone (copy) of the official repository on
the central server at a given point in time
– Done using the services provided by GitHub or GitLab
– Allow to do changes without affecting the central repository
– Not synchronized automatically with official repository
– Needed to integrate changes into the “Central Repository”

● The “local repository” or “working copy” is a clone from the
central server on your local computer

 Getting help
● GIT offers are very powerful builtin help

– Get an overview about most important commands
● git help

– Get a list off all commands
● git help -a
● Can be used to confirm the number of commands

– Get detailed help about a subcommand
● git help <subcommand>
● e.g. git help blame

● GIT Book
● Webpage

https://git-scm.com/book/en/v2
https://git-scm.com/

Git Configuration
● Configuration can be

– Per user in ~/.gitconfig
● git config --global

– Per repository in path_to_repository/.git/config
● git config --local

– Use git attributes for a per directory config
– Also a system wide config is possible

● Check config with
– git config --list

Advanced Git Configuration
● Define name and mail address which show up in the log message

– git config --global user.name “John Doe”
– git config --global user.email “johndoe@example.com”

● Define your preferred editor
– git config --global core.editor “joe”

● Put output in columns
– git config –global column.ui auto

● Sort your branches as function of time
– git config –global branch-sort -committerdate

● Define aliases
– git config --global alias.st “status -bs”

● Status output with git st
– git config –global alias.l “log --graph”

● History view with git l

mailto:johndoe@example.com

Git Clone
● Create a “working copy” of an existing git repository on your

local computer
● Clone with different transfer protocols

– HTTP
● git clone https://gitlab.in2p3.fr/f.uhlig/base_project/

– SSH
● git clone git@gitlab.in2p3.fr:f.uhlig/base_project/

– GIT
● git clone git://gitlab.in2p3.fr/f.uhlig/base_project/

– Filesystem
● git clone /some_filesystem/base_project

– If no branch is specified the default branch is available after cloning
● Normally the branch is called “master” or “main”

Git Areas
● The working copy is a single

checkout of one version of the
project

● The staging area contains
information what will go into your
next commit

● The .git directory is the place
where git stores the metadata
and object database for your
project.

● The .git directory is the local
repository

Git Lifecycle
● Check current status

– git status
● Add a file git add
● Stage a file git add
● Remove a file git rm
● Rename a file git mv
● Unstage

– git restore
--staged

● Unmodify
– git checkout –-
– git restore

Files not
known to
Git

Files already in the Git repository

Diff
● View not yet staged changes

– git diff
● View staged changes

– git diff –staged
● View changes compared to a different branch

– git diff <branchname>
– e.g. git diff upstream/main

● View staged changes before each commit
– To be sure what you are about to commit
– You only commit files which are already staged

Commit
● Choose a good commit message

– https://chris.beams.io/posts/git-commit
● git commit

– Opens your editor to enter the commit message
● Allows to type complex commit messages
● Default editor if nothing else specified is “vi”

– Will list all files which will be committed
● git commit -m ”Good commit message”

– Shortcut for simple one-line commit message
● Up to now we are still on out local computer

– git commit add changes only to the local repository

https://chris.beams.io/posts/git-commit

Commit Hash
● For each commit git calculates a unique hash value

which identifies this commit
– Hash value depends on the metadata and the patch set of the

commit
– Hash value depends also on the history of the current commit
– It is not possible to change the history without leaving traces
– If the history will be changed also the commit hashes will

change
● Avoid doing this on the “official repository”!!!
● Avoid doing this with repositories you have shared with others!!
● In your own workspace you can do whatever you like

Internal Representation

● Each commit is a snapshot of the git directory at the time of
the commit
– Git basically takes a picture of how your files look like at the time of

the commit and stores a reference to this snapshot
● Don’t store unchanged files again but links to previous

version

Other Useful Commands
● View the history

– git log
● Get detailed information about a single commit

– git show commit hash
● Changes + Metadata

Collaborative work
● So far everything work was only done with the local

repository
– Except the initial cloning of a repository

● How to work with collaborators?
– How to make your changes known to others?

● GIT allows many different workflows for this purpose
– Generate patches and send them by mail
– Central server for synchronization

● Most common ones are GitHub and GitLab

Git Commit vs. SVN Commit
● A “svn commit” send the local changes to the central server

– Creates a new revision
● A “git commit” documents your local change history

– Can be very granular
– Documents what you did during your development which includes

also all mistakes
● The local commit history can be changed

– Squash commits
– Reorder commits
– Change commit messages, time, author, …

● In public branches the commit history must not be changed

Remote repositories
● Remotes are names which refer to other git repositories and

are valid only for the working copy
● Show remote repositories

– git remote -v
● origin is the default remote repository after cloning
● Add new remote repository

– git remote add <name> <url>
● Remove a remote repository

– git remote remove <name>

Interacting with Remotes
● Download all objects (e.g. commits) and refs (e.g. tags) from

the remote repository which are not in your local repository.
– git fetch <remote name>
– This command does not merge the changes with your local work

directory !!
● Upload changes from your local repository to the remote

repository
– git push <remote name> <branch name>
– git push <remote name <tag name>
– git push <remote name> <local branch name>:<remote branch

name>

Tagging
● A tag is an arbitrary repository-local name that points to a commit

hash
– Better to remember than a commit hash ;-}}

● A tag is used to define important points in the project history
– Usually projects apply the versioning scheme via tags

● List tags
– git tag -l

● Create an annotated tag
– git tag -a name -m”Major release”

● Delete tag
– git tag -d name

● Push tag
– git push <remote> <tag name>
– git push <remote> --tags

Internal Representation

● Each commit is a snapshot of the git directory at the time of
the commit
– Git basically takes a picture of how your files look like at the time of

the commit and stores a reference to this snapshot
● Don’t store unchanged files again but links to previous

version

Branches
● Create a new branch

from the current hash
value
– git branch <name>
– e.g.

git branch testing
● Creates a new pointer

to the same commit
you are currently on

● HEAD is a tag which
points to the branch
you are currently on

testing master

Branches
● Now switch to the

newly created branch
– git checkout testing

● Moves HEAD to point
to the testing branch

Branches
● Moves HEAD to point to the

testing branch
● Let’s change a file and

commit
– git commit -a -m “change”

Branches
● Let’s change a file and

commit
– git commit -a -m “change”

● Testing has moved forward
● Master still points to old

commit
● Let’s switch back to master

– git checkout master

Branches

● Let’s switch back to master
– git checkout master

● Now HEAD points to master
● Also reverted files in your

working directory back to the
snapshot master points to

● Let’s now commit something
in master
– git commit -a -m “change 2”

Branches
● Let’s now commit

something in master
– git commit -a -m

“change 2”
● Now your history has

diverged
● How to get the changes

from testing into master?

Merge vs. Rebase
● Two different ways to integrate the changes from one branch

 into another
● A git merge performs a three way merge between the two

latests branch snapshots and the most recent ancestor of
the two, creating a new commit
– A merge has two parent commits

● With a git rebase you take all the changes done in one
branch and reply them onto another branch
– A rebase has only on parent

● Rebasing results in a clean linear history
– Personally I prefer rebasing so I will introduce later a workflow

using rebasing

Merge

git checkout master
git merge experiment

HEAD

HEAD

Rebase

git checkout experiment
git rebase master

HEAD

HEAD

Rebase II

git checkout master
git merge –ff-only experiment

HEAD

HEAD

Repository graphs

Naming Conventions
● User

– Person who only intends to download and use the project
source code

● Developer
– Person who intends to contribute to the official project

repository
● Manager

– Person who manages the official project repository
– I am not sure if this will be covered during this week

 Workflow For Users

Local
Working

Copy
At t0

Get the code initially
Official
Repo

on GitLab

git clone
https://gitlab.in2p3.fr/f.uhlig/base_project/

 Workflow For Users
Update the code

Official
Repo

on GitLab

Official
Repo

on GitLab

cd <source_directory>
git fetch origin
git rebase origin/master

Local
Working

Copy
At t0

Local
Working

Copy
t0->t1

Time

 Summary For Users
● Either get the code initially or update the local working

copy to the latest state
● No code changes are done

 Workflow For Developers
● Developers get the code in the same way as the users
● Developers get updates in the same way as the users
● How do developers get their local changes back into the

“Official Repository”?
– Nobody has direct write access to the official repository!!!

 Workflow For Developers
Commit the code to

the official repository

XNot allowed
Not even for

managers

Official
Repo

on GitLab

Local
Working

Copy

 Workflow For Developers
● If the direct way is blocked we have to use a bypass
● The following slides show the proposed GIT workflow

– Fork and Merge Workflow

Workflow For Developers
Final Picture

Local
Workin

g
Copy

Fork of the
official Repo

on GitLab

git clone

git fetch
git rebase

git push

Create Merge Request
which is merged by
a manager of the official
repository

Official
Repo

on GitLab

 User Developer→
● How to get changes into the repository?
● Create a copy of the official repository on the GitLab

Server in your user account
– Creating a fork of the official repository

● Forking is a server side copy of the project
– Has to be done only once
– Since this is done using the GUI of the web server some

screenshots are attached
– Navigate to the official repository of a small test project at

https://gitlab.in2p3.fr/f.uhlig/base_project/
● Click on the “fork” button

– Creates a copy of the official repository in your user account

https://gitlab.in2p3.fr/f.uhlig/base_project/

 Fork The Repository

 Fork The Repository II

1. Choose your user

2. Click

 Project configuration
● Since we want to use the rebase workflow one needs to

choose the correct merge method
– Otherwise you may introduce merge commits in your fork

which can’t be merged in the official repository
● All other settings are optional

– Take your time to go through the list of options

 Choose the correct settings

Choose Fast-forward merge

 After Creating the Fork

Local
Working

Copy

git clone

Official
Repo

on GitLab

Fork of the
official Repo

on GitLab

 After Creating the Fork

git clone

Official
Repo

on GitLab

Fork of the
official Repo

on GitLab

Local
Working

Copy

 Naming Conventions
● The repository which was used for the clone of the local

working copy is named “origin”
– Check where it points to

● git remote -v
● “origin” is only a name
● “origin” may point either to your fork or to the official

repository
– Very unfortunate situation since people use the same name for two

completely different things
● Everybody should use the same convention

– Change the name
● git remote rename <old> <new>

– Use “upstream” for the official repository

Connecting the Second
Repository

Local
Workin

g
Copy

Official
Repo

on GitLab

Fork of the
official Repo

on GitLab

Connecting the second
Repository

● You can have many remote repositories connected to your local
working copy

● Local copy cloned from official repository
– git remote add myfork https://gitlab.in2p3.fr/<user>/base_project

myfork is only a name which indicates my repository fork
– git remote rename origin upstream

● Local copy cloned from your fork
– git remote add upstream https://gitlab.in2p3.fr/f.uhlig/base_project
– git remote rename origin myfork

Connecting the Second
Repository

Local
Workin

g
Copy

upstream myfork

Official
Repo

on GitLab

Fork of the
official Repo

on GitLab

 Task
● Add your name in main.cpp such that it printed when

executing the program greetings
– Create a new branch locally
– Add the file locally
– Commit the changes to the new branch
– Push the changes (Branch) to your fork

int main(int argc, char *argv[]){
 hello("Tesuser");
 hello(“Florian Uhlig”);
 return 0;
}

 Upload local changes to GitLab
● In the following I assume that you know how to work with

git locally
– git checkout -b add_my_name
– git add <file>
– git commit

● How to get your changes to your fork
– git push <repository name> <local branch>:<repository

branch>
– git push myfork add_my_name:add_my_name

● Will upload the local branch add_my_name to your fork on GitLab
● Assumes that you chose the same names as I used

 Workflow

#1

#5

#4

#3

#2

Official
GIT

Repo

master

 Workflow

#1

#5

#4

#3

#2

Official
GIT

Repo

master

#1

#5

#4

#3

#2

Local
Work
Copy

master

git clone URL

Get the code

 Workflow

#1

#5

#4

#3

#2

Official
GIT

Repo

master

#1

#5

#4

#3

#2

Local
Work
Copy

master

git clone URL

#1

#5

#4

#3

#2

Local
Work
Copy

add_my_name

Get the code

git checkout -b
add_my_name

Create a new
branch for
development

 Workflow

#1

#5

#4

#3

#2

Official
GIT

Repo

master

#1

#5

#4

#3

#2

Local
Work
Copy

master

git clone URL

#1

#5

#4

#3

#2

add_my_name

Get the code

#6

 Workflow

#1

#5

#4

#3

#2

Official
GIT

Repo

master

#1

#5

#4

#3

#2

Local
Work
Copy

master

git clone URL

#1

#5

#4

#3

#2

Get the code

#6

#1

#5

#4

#3

#2

#6

Fork on
GIT Server

Everything:
git push myfork

Only one branch:
git push myfork
add_my_name

Upload the code

add_my_name add_my_name

 Create A Merge Request
● Navigate to your fork on the GIT server

– For me the URL is
https://gitlab.in2p3.fr/floriangroupfortesting/base_project

– Click on “New merge request” from the “new” menu
– Choose the proper source and target branches

● The source branch in our example is add_may_name from my fork of
base_project

● The target branch is always main from f.uhlig/base_project
– Click on compare branches and continue

● If everything is correct you can submit the merge request
● Problems are discussed later

– Now we come to the screenshots

 Merge Request

1. click here
to open the
drop down
menu

2. choose
“New
merge
request”

 Merge Request

1. Choose the
correct branches

2. Compare branches
And continue

 Merge Request

A good title and
description will
help the reviewer

You may add an
assignee and a
reviewer

Submit the
merge request

 Merge Request Feedback
● After the merge request (MR) is submitted there are currently

some checks (Continuous Integration) done
1) Check if the MR is properly rebased
2) Check if the history is linear
3) Reviewer will check the code and give feedback and may request

 changes (not automatic)
● All above stages may fail which will need updates from you
● Do the changes and push the changes to the same branch

– The update of the branch will trigger steps 1-3 again
– Repeat until the merge request is accepted and merged
– Relax

 CI checks in detail
● All checks are defined in the file .gitlab-ci.yml
● Checks can be separated in stages e.g. build and test
● Several test per stage are possible

stages:
 - checkRepository

RebaseCheck:
 stage: checkRepository
 variables:
 GIT_DEPTH: 200
 image: alpine
 only:
 refs:
 - merge_requests
 variables:
 - $CI_MERGE_REQUEST_PROJECT_PATH == "f.uhlig/base_project" && $CI_MERGE_REQUEST_TARGET_BRANCH_NAME == "main"
 Script:
 - echo “Hello”

docker image (alpine) used for the check

Script/Program doing the actual check

Run only if a merge request to main branch
of project f.uhlig/base_project

 Rebase check
● Get the commit hash of the main branch of the upstream

repository (HEAD of the upstream repository)
– git show-ref upstream/main | cut -f1 -d’ ‘

● Get the commit hash of the commit where the MR
branch was branched off the upstream/main branch
– git merge-base upstream/main HEAD

● If both commits are equal the MR branch was properly
rebased

 Linear history check
● Check if there are any merge commits in the commits of

the MR branch
– git rev-list --min-parents=2 --count upstream/main..HEAD

● git rev-list
– Get the list of commits

● --min-parents=2 –count
– Filter the list for commits with two parents (merge commits)

and count them
– Rebase commits have only one parent -> linear history

● upstream/main..HEAD
– Use only commits which will be added with the current merge

request

 Merge conflicts
● In reality not very frequent
● Since many users will change the same file and probably

the same line most of you will have to fix merge conflicts
– Nothing to worry about
– In most cases GIT can resolve the conflicts for you
– Conflicts are clearly shown in the files such that you can solve

them manually

 Merge Request Conflict

#1

#5

#4

#3

#2

Official
GIT

Repo

master

#1

#5

#4

#3

#2

Local
Work
Copy

master

#1

#5

#4

#3

#2

#6

#1

#5

#4

#3

#2

#6

Fork on
GIT Server

Everything:
git push myfork

Only one branch:
git push myfork
add_my_name

Upload the code

#6’’ #6

add_my_name add_my_name

 Merge Request Conflicts
● Depending on the settings of the fork it may be possible

to fix the conflict on the server
– Can be done by an admin of the official project
– No user intervention needed
– Will change code in your fork !!!

● Always use an extra branch which will be deleted after merging

● Please remember to always do a “rebase” before you
create a merge request
– Start the merge request with a clean state

 Solve the conflict locally

#1

#5

#4

#3

#2

Official
GIT

Repo

master

#1

#5

#4

#3

#2

Local Work
Copy

master

#1

#5

#4

#3

#2

#6#6’’ #6’’

Apply the changes
In working branch

git checkout
add_my_name

git rebase
upstream/master

Get the
changed code

git fetch upstream

#1

#5

#4

#3

#2

Local Work
Copy

master

#1

#5

#4

#3

#2

#6

#6’’ #6’’

add_my_name add_my_name

 Push the changes

#1

#5

#4

#3

#2

Official
GIT

Repo

master

#1

#5

#4

#3

#2

Local Work
Copy

master

#1

#5

#4

#3

#2

#6

#1

#5

#4

#3

#2

#6’’

Fork on
GIT Server

Everything:
git push myfork

Only one branch:
git push myfork
add_my_name

Upload the code

#6’’ #6’’

Apply the changes
In working branch

git rebase
upstream/master

Get the
changed code

git fetch upstream

#6 #6

#6’’

add_my_name add_my_name

 Weak point of rebase workflow
● Since you changed the local history GitLab will not accept

the push
– GitLab detects history mismatch

● Compare your local branch to the remote branch on the
server to be sure that you only commit the wanted changes
– git diff myfork/add_my_name

● If the diff only shows the expected changes do a force push
– git push myfork add_my_name –force-with-lease

● If you are unsure create a new branch and a new merge
request on the servers
– git push myfork add_my_name:add_my_name_2
– Don’t forget to cleanup after your MR was merged

 Conclusion
● Hope you got an idea about GIT and the proposed workflow

– Ask questions, discuss or complain
– I am around till Wednesday evening to sort out problems
– Don’t be afraid to use git, if you are unsure you always can create

another branch for testing
● Get a free backup when using a remote GitLab/GitHub

server
● Use GIT for everything where you want to keep the history of

development
– Code
– Thesis
– Paper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

