From version control
to GitLab

EURO-LABS Advanced Training
Open Science and Data Management

Content

* Version Control

- What is it?

- How can it help you?
 GIT

- Under the hood
- Branching and Merging

e GitLab

- GUI
- Workflows

Underlying Problem

* How do you keep track of changes made to your files?

— Do the bookkeeping yourself.

Create new files every time you do a change.
* Will create a huge number of files which are complicated to organize

°* May blow up your disk space
* No metadata information if not saved separately

* How do you communicate changes to your
collaborators?

— Send changes by mail?
- Work all in the same account?

* Use a system which hides all the complications from the
user

Version Control

* A version control system (VCS) manages documents over time

* A VCS keeps the history of all changes
* Many versions of every file
Allows to go back to an older version of the file
Show differences between different versions
* Log messages name the reason for changes

* A VCS coordinates the work of multiple authors
* Avoid conflicts between the developments of different developers

* A VCS allows user authentication and controlled access to files
* Read/Write permissions for user and groups
* Permissions can apply for repo, directory, or file (depend on VCS)

Which Information is Stored

Content what has changed? -
Date when did it change? - VCS does

Author who changed it? J this
Reason why has it changed? } you enter
this

The Reason (Commit Comment) should be meaningful and explanatory !!
Don’t say how you have changed but why and what

 Bad: bug-fix

* Good: Correctly initialize variable x because of division by zero
Separate subject from body with a blank line

Limit the subject line to 50 characters
Wrap the body at 72 characters

| ocal Version Control System

Checkout

Local Computer

Version Database

Version 3

Version 2

Version 1

» Store differences between
versions (deltas) for each file
In a special format

* Less error prone than
manually managing file
versions

* E.g. RCS

Central Version Control System

Computer A

G-

Central VCS Server

Computer B

<&

Version Database

Version 3

Version 2

Version 1

Allows a collaboration of
different developers

Fine grained access
control Is possible

Central Server Is a single
point of failure

Commits went always to
the central server

If the server is locally on
your computer it works
as local VCS

E.g. CVS or Subversion

Distributed Version Control System

Server Computer

Version Database

Version 3

Version 2

Version 1

Computer A

<

Version Database

Version 3
|
Version 2
|

Version 1

[\

Computer B

Bt

A
Y

Version Database

Version 3
|
Version 2
|
Version 1

Each computer has a copy of the
full history

Commits are done first locally
which allows to save the full
history of changes locally

No single point of failure since
every client copy is a full backup

Depending on workflow
synchronization can be
complicated

Most workflows use a central
server

E.g. Git, Mercurial

GIT

e Basic commands
* GIT Internal
* Branching
* Merging
- Merge commits vs. Rebase

GIT

* Do you know how many GIT subcommands exist?

- e.g. git add

GIT commands

* There are 145 git commands

- Information from a talk by Scott Chacon

* Co-founder of GitHub
* https://www.youtube.com/watch?v=aoll Rz0ZqY

https://www.youtube.com/watch?v=aolI_Rz0ZqY

GIT commands

* There are 145 git commands

- Information from a talk by Scott Chacon

* Co-founder of GitHub
* https://www.youtube.com/watch?v=aoll Rz0ZqY

e 82 Basic commands

- 44 main commands (add, commit, push, pull, ...)
- 11 manipulators (config, reflog, replace, ...)

- 17 interrogators (blame, fchk, rerere, ...)

- 10 interactors (send-email, p4, svn, ...)

* 63 plumbing (low level) commands
— Check the presentation

https://www.youtube.com/watch?v=aolI_Rz0ZqY

GIT commands

e GIT add new commands but doesn’t remove the old
ones

- Avallable commands depend on the used GIT version
- If you are working with various git versions you may know both

» Often different commands do the same thing

- Revert changes to a file
 git checkout -- <file> and git restore <file>
- Change the working branch
 git checkout <branchname> and git switch <branchname>

Workflow

* Local and central version control systems define a more
or less fixed workflow

* With a distributed version control system many different
workflows become possible

* GitIs a very powerful toolbox to implement many
different workflows

- Good: very powerful and flexible
- Bad: very powerful and flexible

* Before starting with a collaborative project define the
used workflow

Repository

* The “Central Repository” is the official source of the project
on a central server

~ GitHub or GitLab are well known repository providers
* Allow to implement workflows

~ Everything else isn’t an official version !!!

* A“Fork” is a private clone (copy) of the official repository on
the central server at a given point in time

~ Done using the services provided by GitHub or GitLab

~ Allow to do changes without affecting the central repository
~ Not synchronized automatically with official repository

~ Needed to integrate changes into the “Central Repository”

* The “local repository” or “working copy” is a clone from the
central server on your local computer

Getting help

* GIT offers are very powerful builtin help

— Get an overview about most important commands
* git help

— Get a list off all commands
* git help -a
* Can be used to confirm the number of commands

— Get detailed help about a subcommand
* git help <subcommand>
° e.g. git help blame

* GIT Book

* Webpage

https://git-scm.com/book/en/v2
https://git-scm.com/

Git Configuration

* Configuration can be

- Per user in ~/.gitconfig
 git config --global

— Per repository in path_to_repository/.git/config
* git config --local

— Use qit attributes for a per directory config

- Also a system wide config is possible
* Check config with
- git config --list

Advanced Git Configuration

* Define name and mail address which show up in the log message

— git config --global user.name “John Doe”
— git config --global user.email “johndoe@example.com”

* Define your preferred editor
— git config --global core.editor “joe”
* Put output in columns
— git config —global column.ui auto
* Sort your branches as function of time
— git config —global branch-sort -committerdate
* Define aliases

— git config --global alias.st “status -bs”
* Status output with git st

— git config —global alias.l “log --graph”
* History view with git |

mailto:johndoe@example.com

Git Clone

* Create a “working copy” of an existing git repository on your
local computer

* Clone with different transfer protocols

- HTTP
* git clone https://qgitlab.in2p3.fr/f.uhlig/base_project/
- SSH
* git clone git@gqitlab.in2p3.fr:f.uhlig/base_project/
- GIT
* git clone git://gitlab.in2p3.fr/f.uhlig/base_project/
— Filesystem
* git clone /some_filesystem/base project
— If no branch is specified the default branch is available after cloning
* Normally the branch is called “master” or “main”

Git Areas

Working Staging .git directory
Directory Area (Repository)

Checkout the project

Stage Fixes

* The working copy Is a single
checkout of one version of the
project

* The staging area contains
Information what will go into your
next commit

* The .git directory Is the place
where git stores the metadata
and object database for your
project.

* The .qgit directory Is the local
repository

Git Lifecycle

* Check current status

E::g\?vmct) Files already in the Git repository ~ git status
Git * Add a file git add

g

Remove a file git rm

* Rename a file git mv

Edit the file) UnStage
Stage the file ~ git restore
--staged
* Unmodify
~ git checkout —-

~ git restore

Diff

* View not yet staged changes
- git diff
* View staged changes
— git diff —staged
* View changes compared to a different branch
— git diff <branchname>
~ e.qg. git diff upstream/main
* View staged changes before each commit

~ To be sure what you are about to commit
~ You only commit files which are already staged

Commit

* Choose a good commit message

— https://chris.beams.io/posts/git-commit
* git commit
— Opens your editor to enter the commit message

* Allows to type complex commit messages
* Default editor if nothing else specified is “vi”

- Will list all files which will be committed
* git commit -m "Good commit message”
— Shortcut for simple one-line commit message
* Up to now we are still on out local computer
- git commit add changes only to the local repository

https://chris.beams.io/posts/git-commit

Commit Hash

* For each commit git calculates a unique hash value
which identifies this commit

- Hash value depends on the metadata and the patch set of the
commit

- Hash value depends also on the history of the current commit
— It Is not possible to change the history without leaving traces

— If the history will be changed also the commit hashes will
change
* Avoid doing this on the “official repository”!!!
e Avoid doing this with repositories you have shared with others!!
* In your own workspace you can do whatever you like

Internal Representation

Checkins Over Time

* Each commit is a snapshot of the git directory at the time of
the commit

— Git basically takes a picture of how your files look like at the time of
the commit and stores a reference to this snapshot

* Don’t store unchanged files again but links to previous
version

Other Useful Commands

* View the history
- git log
* Get detailed information about a single commit

- git show commit hash
* Changes + Metadata

Collaborative work

* So far everything work was only done with the local
repository

— Except the initial cloning of a repository
* How to work with collaborators?
- How to make your changes known to others?
* GIT allows many different workflows for this purpose

- Generate patches and send them by mail

— Central server for synchronization
e Most common ones are GitHub and GitLab

Git Commit vs. SVN Commit

* A'svn commit” send the local changes to the central server
— Creates a new revision
* A“git commit” documents your local change history

— Can be very granular

— Documents what you did during your development which includes
also all mistakes

* The local commit history can be changed

— Squash commits
— Reorder commits
— Change commit messages, time, author, ...

* In public branches the commit history must not be changed

Remote repositories

Remotes are names which refer to other git repositories and
are valid only for the working copy

Show remote repositories

— git remote -v

origin 1s the default remote repository after cloning
Add new remote repository

— git remote add <name> <url>

Remove a remote repository

— git remote remove <name>

Interacting with Remotes

* Download all objects (e.g. commits) and refs (e.g. tags) from
the remote repository which are not in your local repository.

— git fetch <remote name>
~ This command does not merge the changes with your local work
directory !!
* Upload changes from your local repository to the remote
repository
~ git push <remote name> <branch name>
~ git push <remote name <tag nhame>

~ git push <remote name> <local branch nhame>:<remote branch
hame>

Tagging

ﬁtaﬁ; IS an arbitrary repository-local name that points to a commit
as

— Better to remember than a commit hash ;-}}

A tag Is used to define important points in the project history
— Usually projects apply the versioning scheme via tags

List tags

— gittag -

Create an annotated tag

— git tag -a hame -m”Major release”

Delete tag

— git tag -d name

Push tag

— git push <remote> <tag name>
— git push <remote> --tags

Internal Representation

Checkins Over Time

* Each commit is a snapshot of the git directory at the time of
the commit

— Git basically takes a picture of how your files look like at the time of
the commit and stores a reference to this snapshot

* Don’t store unchanged files again but links to previous
version

Branches

* Create a new branch
from the current hash
value

— git branch <name>

master - €e.0.
git branch testing
98cag 34ac2 f30ab * Creates a new pointer
to the same commit
you are currently on
Snapshot A Snapshot B . .
‘ : * HEAD is a tag which

points to the branch
you are currently on

Branches

* Now switch to the
newly created branch

- git checkout testing

ey * Moves HEAD to point
to the testing branch

98ca9 - 34ac?2 - f30ab

e

Branches

98ca9

-

34ac?

m

- f30ab

testing

* Moves HEAD to point to the
testing branch

* Let’s change a file and
commit

- git commit -a -m “change”

Branches

* Let’s change a file and
commit

- git commit -a -m “change”

W * Testing has moved forward

98ca9 <-— 34ac2 - f36ab =——— 87ab2 | MaSter Stl” pOIntS tO Old
commit

e Let's switch back to master
— git checkout master

Branches

98ca9

-

34ac2

B

master

f30ab

-

87ab2

e

Let’s switch back to master
- git checkout master
Now HEAD points to master

Also reverted files in your
working directory back to the
snapshot master points to

Let’'s now commit something
IN master

- git commit -a -m “change 2”

Branches

* Let’'s now commit
something in master

i - git commit -a -m
“change 2”

* Now your history has
== diverged

master

98ca9 - 3d4ac2 - f3@ab

- * How to get the changes
i from testing into master?

Merge vs. Rebase

* Two different ways to integrate the changes from one branch
Into another

* A git merge performs a three way merge between the two
latests branch snapshots and the most recent ancestor of
the two, creating a new commit

— A merge has two parent commits

* With a git rebase you take all the changes done in one
branch and reply them onto another branch

— Arebase has only on parent
* Rebasing results in a clean linear history

— Personally | prefer rebasing so | will introduce later a workflow
using rebasing

experiment

s git checkout master

/ git merge experiment

co - C1 - C2 - £3

C4
ce - C1 - C2 - c3 - C5

master

Rebase

experiment

C4

git checkout experiment
,/ git rebase master

co e — C1 - C2 - £3

o experiment

ce - C1 - C2 - c3 -+ c4'

Rebase ||

experiment

ce - Ll - c2 - C3 - Cc4'

git checkout master
git merge —ff-only experiment

experiment

o - C1 - c2 - C3 - c4'

Repository graphs

Owners

cbm-fles

tschuett

jrnh58

helvihartmann

hieager

Zychoz

Jan Feb
18 19 20 26 27 24 27 28
7 7 7
_\ > _\ — —
NP N— Owners
FairRootGroup
rklasen

DanielWielanek
kresan

ESSnuSB

karabowi

MohammadAlTurany

dennisklein

fuhlig1

kgertsenberger

Jan Feb

22 23 28 4

—>e

} @AOW oW

arejdwe)joeloud"aunmes)

feu:

["ppe

JuaIj0supjue)|

iy
§
g
@
&
B
o
3
N

Jejsew

Naming Conventions

* User

— Person who only intends to download and use the project
source code

* Developer

— Person who intends to contribute to the official project
repository

* Manager

— Person who manages the official project repository
— | am not sure If this will be covered during this week

Workflow For Users

Get the code initially

git clone
https://gitlab.in2p3.fr/f.uhlig/base project/

Workflow For Users

Update the code

cd <source_directory>
git fetch origin
git rebase origin/master

Time

Summary For Users

* Either get the code Initially or update the local working
copy to the latest state

* No code changes are done

Workflow For Developers

* Developers get the code in the same way as the users

* Developers get updates in the same way as the users

* How do developers get their local changes back into the
“Official Repository™?

- Nobody has direct write access to the official repository!!!

Workflow For Developers

Commit the code to
the official repository

Not allowed
Not even for
managers

Workflow For Developers

* |f the direct way Is blocked we have to use a bypass

* The following slides show the proposed GIT workflow
- Fork and Merge Workflow

Workflow For Developers
Final Picture

Df ' Create Merge Request F e
; which is merged by Of o

a manager of the official 'H.

repository u'ﬂ

git clone

git fetch git push

git rebase

User = Developer

* How to get changes into the repository?

* Create a copy of the official repository on the GitLab
Server In your user account

— Creating a fork of the official repository
* Forking is a server side copy of the project
— Has to be done only once

— Since this is done using the GUI of the web server some
screenshots are attachec

— Navigate to the official repository of a small test project at

https://gitlab.in2p3.fr/f.uhlig/base_project/
* Click on the “fork” button
— Creates a copy of the official repository in your user account

https://gitlab.in2p3.fr/f.uhlig/base_project/

Fork The Repository

@) Help

00 (@ [% gitlab.in2p3.fr/f.uhlig/base_project/ o 0@ A @ © D OE < even =
ﬁ] “ O + :ﬁ: Florian Uhlig / base_project
© O $24 &
& Q Search or go to B base—projeCt ® o~ e Star | 0 & Fork | O :
@ Project ¥ main v base_project /| | + v History Find file Edit v Project inform
@ . —
I B base_project
®) iy Add real test o
X Pinned ¥ ’-‘!’ Florian Uhlig authored 4 weeks ago 9db8d3s2 | [©- Sicom
a |S5iias B ¥ 3Branches
o 0 Tags
€ Merge requests 2 Name Last commit Last update Z g
@ & 1,023 KiB Project Storage
- 8 Manage > _gitlab-ci/scri ;
& [¢] 3 .gitlab-ci/scripts Add directory for CI/CD 4 weeks ago £ T Ensironment
& Plan 2 & gitlab-ci.yml Add real test 4 weeks ago
® <[> Code [} README
< CMakelLists.txt Clean build system 4 weeks ago . .
@ o Build & b 9 77 CI/CD configuration
@ 0 M+ README.md Initial commit 1 month ago + Add LICENSE
Secure
®) By [hello_world.F Rename file 1month ago fredd CHARGELDG
+ Add CONTRIBUTING
& Operate C hello_world.c Initial commit 1 month ago
9 + Add Kubernetes cluster
@ Lz Monitor C+ hello_world.cpp Initial commit 1month ago + Add Wiki
! W .)
o analize [hello_world.f77 Initial commit 1month ago + Configure Integrations
@3 Settings
[® README.md Created on
PN October 22, 2024
EB Basic CMake project
A This is a basic CMake project which compiles three hello world programs in
o three different programing languages.
+ Build the project

Fork The Repository |

e0e0® < @ [0 % gitlab.in2p3.fr/f.uhlig/base_project/-/forks/new =2 0@ A @ © O OB < even =
ﬁ] “ D + 5::: Florian Uhlig / base_project / Fork project
@ o 4 0 Project name
& Q Search or go to... @ base_project]
@ . Must start with a lowercase or uppercase letter, digit, emoji, or underscore. Can also contain dots,
Project Fork lect pluses, dashes, or spaces.
@) ork projec
e B base_project Project URL Project slug
® A fork is a copy of a project.
= 5 Pinned v Forking a repository allows you https://gitlab.in2p3.fr/ | floriangroupfortesti... v base_project]
€] fo ma|'<e change.s'wnhout. Want to organize several depen projects under the same namespace? Create a group
Issues 9 affecting the original project
€@ Merge requests 2 Project description (optio
@
88 Manage >
©
BE Plan >
(5]
<[> Code >
@ Branches to include
A4 =
%/ Build 2 © Allbranches
@ 1 S (O Only the default branch main
@ _
@) Deploy 2 Visibility level ®
@ Operate > O & Private
() Project access must be granted explicitly to each user. If this project is part of a group, access will
CW Monitor 5 be granted to members of the group.
© Internal
© It Analyze > Ov . -
The project can be accessed by any logged in user.
Public
03 Settings > o®)) o
The project can be accessed without any authentication.
©
® Fork project Cancel
A
“ 2. Click
L]

+t @ Help

Project configuration

e Since we want to use the rebase workflow one needs to
choose the correct merge method

— Otherwise you may introduce merge commits in your fork
which can’t be merged in the official repository

 All other settings are optional
— Take your time to go through the list of options

Choose the correct settings

@ <

6

R e €0 > 8 o

+

D

< c

834

Q Search or go to..

Project

® F

Plan

Code

Build

Secure

Deploy
Operate
Monitor
Analyze
Settings
General
Integrations
Webhooks
Access tokens
Repository
Merge requests

Cl/cb

1

Packages and registries

Monitor

Usage Quotas

@) Help

A

% gitlab.in2p3.fr/floriangroupfortesting/base_project/-/setting.. = M | & A @ e 0B %

© VPN

FlorianGroupForTesting / base_project / Merge requests

[Q Search page

Merge requests

Choose your merge method, merge options, merge checks, and merge suggestions.

Merge method
Determine what happens to the commit history when you merge a merge request. How do they differ?

() Merge commit
Every merge creates a merge commit.

(O Merge commit with semi-linear history

Every merge creates a merge commit.

Merging is only allowed when the source branch is up-to-date with its target.
When semi-linear merge is not possible, the user is given the option to rebase.
No merge commits are created.

Fast-forward merges only. « C h Oose FaSt_fo rward m

When there is a merge conflict, the user is given the option to rebase.
If merge trains are enabled, merging is only possible if the branch can be rebased without conflicts. What are merge trains?

© Fast-forward merge

Merge options
Additional settings that influence how and when merges are done.

() Automatically resolve merge request diff threads when they become outdated
Show link to create or view a merge request when pushing from the command line

Enable "Delete source branch" option by default
Existing merge requests and protected branches are not affected.

Squash commits when merging
Set the default behavior of this option in merge requests. Changes to this are also applied to existing merge requests. What is squashing?

(O Do not allow
Squashing is never performed and the checkbox is hidden.
O Alow
Checkbox is visible and unselected by default.
(O Encourage
Checkbox is visible and selected by default.
() Require
Squashing is always performed. Checkbox is visible and selected, and users cannot change it.

erge

After Creating the Fork

git clone

After Creating the Fork

git clone

Naming Conventions

* The repository which was used for the clone of the local
working copy is named “origin”
— Check where it points to
° git remote -v
* “origin” Is only a name
* “origin” may point either to your fork or to the official
repository

— Very unfortunate situation since people use the same name for two
completely different things

* Everybody should use the same convention

— Change the name
° git remote rename <old> <new>
— Use “upstream” for the official repository

Connecting the Secono
Repository

Connecting the second

Repository

* You can have many remote repositories connected to your local
working copy
* Local copy cloned from official repository

- git remote add myfork https://gitlab.in2p3.fr/<user>/base_project
myfork is only a name which indicates my repository fork
- git remote rename origin upstream

* Local copy cloned from your fork

- git remote add upstream https:/igitlab.in2p3.fr/f.uhlig/base_project
- git remote rename origin myfork

Connecting the Secono
Repository

.ub_:igl

upstream

Task

* Add your name in main.cpp such that it printed when
executing the program greetings

— Create a new branch locally

— Add the file locally

— Commit the changes to the new branch
~ Push the changes (Branch) to your fork

Int main(int argc, char *argv|]){
hello("Tesuser");
hello(“Florian Uhlig”);
return 0O;

}

Upload local changes to GitLab

* In the following | assume that you know how to work with
git locally

— git checkout -b add_my_name
- git add <file>
— git commit
* How to get your changes to your fork

— git push <repository name> <local branch>:<repository
branch>

— git push myfork add_my_name:add_my name
* Will upload the local branch add_my_name to your fork on GitLab
* Assumes that you chose the same names as | used

Workflow

Official
GIT
Repo

#5
#4
#3
#2

#1

master

Workflow

Official Local
GIT Work
Repo Copy
#5 #5
Get the code
#4 #4
q
#3 git clone URL #3
H#H2 #2
#1 #1

master master

Workflow

Official Local Local
GIT Work Work
Repo Copy Copy
4T e Create a new -
branch for
Get the code development
#4 #4 4

q q

#3 git clone URL #3 gitcheckout -b = 4q
add_my name

#2 #2 #2

#1 #1 #1

master master add_my_name

Workflow

Official Local

GIT Work

#5 #5 #5
Get the code

H#H4 #4 #H4
q

#3 git clone URL #3 #3

#H2 #2 #2

#1 #1 #1

master master add_my_ name

Workflow

Official Local
GIT Work
#9 #5 #5
Get the code Upload the code
#4 #4 #4
q q
#3 git clone URL 49 43 Fverything:
git push myfork
#2 #2 #2
Only one branch:
git push myfork
1 #1 #1 add_my_name

master master add_my_ name

GIT Server

#5

#4

H3

#2

#1

add_my_ name

Create A Merge Request

* Navigate to your fork on the GIT server

~— For me the URL is
https://gitlab.in2p3.fr/floriangroupfortesting/base project

— Click on “New merge request” from the “new” menu

— Choose the proper source and target branches

* The source branch in our example is add_may name from my fork of
base project

* The target branch is always main from f.uhlig/base_project
— Click on compare branches and continue

° If everything Is correct you can submit the merge request

* Problems are discussed later

— Now we come to the screenshots

Merge Request

000 (< (@, [% gitlab.in2p3.fr/floriangroupfortesting/base_project o 09 A @ @© O 0B 3 evw =
== 5‘[g GroupForTesting / base_project
M D -
@; In this project
R New issue av Ye Star | O ¥ Fork O ;
©
R New merge request L]
(,7 # main v base_project / 1 d|lt@k Fhfe r@t v Project information
Invite team members " ——
a
In GitLab i i j t th
© . 4 Forked f-rom Fl?rlan Uhlig / base_pro;e‘ct O O pe n e Update fork o 7 Commits
New project/repository 4 commits behind the upstream repository.
5 ¥ 2 Branches
® | owgrop drop down
© & 0 Tags
. New snippet -9 | test m
(<)) 8 ’-(-!3‘ Florial authored 4 weeks ago e n u ebEds6e f?; & 8KiB Project Storage
Manage >
@ o . £} README
9 ame ast commit ast update
e N L i L d . .
@ s> Code 5 75 CI/CD configuration
] @ Build R B3 .gitlab-ci/scripts Add directory for CI/CD related scripts 4 weeks ago + Add LICENSE
s i + Add CHANGELOG
O Ssecure 0 & .gitlab-ci.yml 4 weeks ago
+ Add CONTRIBUTING
® Deploy > B CMakelists.txt 4 weeks ago
© + Add Kubernetes cluster
© & Operate > e - ;
README.md Initial commit 2 Ch Oose 1month ago + Add Wiki
** @ Monitor > Bh) " = :
ello_world.F Rename file " 1month ago + Configure Integrations
5 il : New
5 C hello_world.c Initial commit 1 month ago
© © Created on
Settings >
5] C++ hello_world.cpp Initial commit I I l e rg e 1month ago November;22;2022
A [hello_world.f77 Initial commit t” 1 month ago
. reques
) README.md
L
9 . :
Basic CMake project
@
This is a basic CMake project which compiles three hello world programs in three different programing languages.
9
. Build the project
+ @ Help

; — P— J

Merge Request

oo < > C [% gitlab.in2p3.fr/floriangroupfortesting/base_project/-/merge_requests/new o 0| @ A @ @© O 0068 K even =
“ 0O + :ﬁ} FlorianGroupForTesting / base_project / Merge requests / New
® o 314 1
) New merge request
@ Q Search or go to...
@ project Source branch Target branch
- B base_project floriangroupfortesting/base_project v I{ add_florian v]I f.uhlig/base_project v main v
@ 5 Pinned ¥ e . =
@ =-; Adq user‘uhllg 4blbbFd3 | [x).(Adc‘i user.secondtestuser bobbc269 | [
= Issues 0 “0¢ Florian Uhlig authored Nov 22, 2024 0% Florian Uhlig authored Nov 22, 2024
@ Merge requests 0)
Compare branches and continue
@ & Manage >
&
C Plan >
@ </> Code >
@ ¢ Build >
o O Secure >
4 ® Deploy >
@ & Operate >
= G Monitor >
L Analyze > 2 C b h
¢ . Lompare branches 1. Choose the
@ Settings > .
= d t tb h
- And continue correct branches
@
L
@
@,
P

Merge Request

000 (C [% gitlab.in2p3.fr/floriangroupfortesting/base_project/-/merge_requests/new?merge_request%5Bsource_project_id... £ Q 0 | @ A @ @ 006 K evwew =
ED “ 0o + :ﬁ; FlorianGroupForTesting / base_project / Merge requests /| New
) o Be @1
@ New merge request
Q Search or go to...
@) From floriangroupfortesting/base_project:add_florian into f.uhlig/base_project:main Change branches
Project
(§‘ Title (required)
= B base_project
Add florian ‘
5 Pinned v = -
@ | Mark as draft
©\ Issues o Drafts cannot be merged until marked ready. |
. Merge requests 0 Description = - =
g escription wi
88 Manage > Preview B I § 1= < & =8 B8 e
@ Bl Plan > =
If you have a detailed description in your commit message this one is taken here. hel th e reVI eWer
(5] <> Code >
(‘) 7 Build >
N @ Secure >
@
@ Deploy 2d Switch to rich text editing
C” @ Operate 2 Add description templates to help your contributors to communicate effectively!
[>] = Monitor >
You may a an
) i Analyze >
Florian Uhlig v
- @ Settings > -
. assignee and a
- Florian Uhlig v .
Miesone reviewer
Select milestone "
©
Labels
& Select label v
A
Merge options
@) Delete source branch when merge request is accepted.
| Squash commits when merge request is accepted. @
. Submit th
Contribution
®, Allow commits from members who can merge to the target branch. About this feature. m e r E: re u e St
g 1 q
»
+ @ Help Commits 0

‘)

Merge Request Feedback

* After the merge request (MR) is submitted there are currently
some checks (Continuous Integration) done

1) Check if the MR is properly rebased

2) Check if the history is linear

3) Reviewer will check the code and give feedback and may request
changes (not automatic)

* All above stages may fail which will need updates from you

* Do the changes and push the changes to the same branch

— The update of the branch will trigger steps 1-3 again
~— Repeat until the merge request is accepted and merged
~— Relax

Cl

checks In detall

| checks are defined in the file .gitlab-ci.yml

necks can be separated in stages e.g. build and test

» Several test per stage are possible

e docker image (alpine) used for the check

Reb Check: . .

stage: checkRepository Run only if a merge request to main branch
iyt / of project f.uhlig/base_project

image: alpine
only:
refs:
- merge_requests
variables:
- $CI_MERGE_REQUEST_PROJECT_PATH == "f.uhlig/base_project" && $CI_MERGE_REQUEST_TARGET_BRANCH_NAME == "main"

Script:
- echo “Hello”
<‘

Script/Program doing the actual check

Rebase check

* Get the commit hash of the main branch of the upstream
repository (HEAD of the upstream repository)

- git show-ref upstream/main | cut -f1 -d’

* Get the commit hash of the commit where the MR
branch was branched off the upstream/main branch

- git merge-base upstream/main HEAD

* |f both commits are equal the MR branch was properly
rebased

|_inear history check

* Check If there are any merge commits in the commits of
the MR branch

— git rev-list --min-parents=2 --count upstream/main..HEAD
° git rev-list

— Get the list of commits
°* --min-parents=2 —count

— Filter the list for commits with two parents (merge commits)
and count them

~— Rebase commits have only one parent -> linear history

* upstream/main..HEAD

— Use only commits which will be added with the current merge
request

Merge contlicts

* |n reality not very frequent

* Since many users will change the same file and probably
the same line most of you will have to fix merge conflicts

- Nothing to worry about
- In most cases GIT can resolve the conflicts for you

— Conflicts are clearly shown in the files such that you can solve
them manually

Merge Request Conflict

Official
GIT Local
Work
Copy
#9 #5 #5
Upload the code
#4 #4 #4 -
#3 #3 #3 Everything:
git push myfork
#2 #2 #2
Only one branch:
git push myfork
#1 #1 #1 add_my_name

master master add_my_ name

GIT Server

#5

#4

H3

#2

#1

add_my_ name

Merge Request Conflicts

* Depending on the settings of the fork it may be possible
to fix the conflict on the server

- Can be done by an admin of the official project
- No user intervention needed

- Wil change code In your fork !!!
* Always use an extra branch which will be deleted after merging

* Please remember to always do a “rebase” before you
create a merge request

- Start the merge request with a clean state

Solve the conflict locally

Official Local Work Local Work 46
GIT Copy Copy
Get the
#5 changed code #5 #5 #5 #5
4q it fetch upstream " " s 44 44
— Apply the changes
43 43 4 In working branch 43 s
git checkout
#2 #2 #2 add_my name #2 H#2
git rebase
i #1 #1 upstream/master #1 #1

master master add_my_name master add_my_name

Push the Changes

Official Local Work ork on -
GIT Copy GIT Server

Get the
#5 changed code 4
#g 9t fetch upstream 44 44 Upload the code
#4
q q
4 Apply the changes = #3 #3 Everything: #3
In working branch git push myfork
#2 #2 #2
git rebase Only one branch: w2
upstream/master git push myfork
#1 #1 #1 add_my_name #1

master master add_my_name add_my_name

Weak point of rebase workflow

* Since you changed the local history GitLab will not accept
the push

— GitLab detects history mismatch

* Compare your local branch to the remote branch on the
server to be sure that you only commit the wanted changes

- git diff myfork/add_my_name
* If the diff only shows the expected changes do a force push
— git push myfork add_my name -force-with-lease

* If you are unsure create a new branch and a new merge
request on the servers

- git push myfork add_my name:add_my name_2
— Don't forget to cleanup after your MR was merged

Conclusion

* Hope you got an idea about GIT and the proposed workflow

— Ask guestions, discuss or complain
— | am around till Wednesday evening to sort out problems

— Don’t be afraid to use git, if you are unsure you always can create
another branch for testing

* Get a free backup when using a remote GitLab/GitHub
server

* Use GIT for everything where you want to keep the history of
development

- Code
— Thesis
- Paper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

