
Metadata for Beginners

Dr. Özlem ÖZKAN

Helmholtz Metadata Collaboration (HMC) Hub Matter

| 2

Who am I?

Dr. Özlem Özkan

BSc: Computer Education

MSc & PhD: Medical Informatics

Experience:

• METU Research Assistant,

• KPMG Data Scientist,

• MDC Research Data Manager,

• HMC Data Policy Expert &

• Training Officer
Gerlich, Silke. C., Strupp, A., Hofmann, V., &

Sandfeld, S. (2023). Fundamentals of Scientific

Metadata (1.0.0). Zenodo.

https://doi.org/10.5281/zenodo.10091847

Creator

https://doi.org/10.5281/zenodo.10091847

| 3

Helmholtz Metadata Collaboration - Mission

3

Making Helmholtz data treasures visible!

• help researchers describe their data with

high-quality metadata

• enable researchers to reuse of Helmholtz research data

• provide advice, information & tools

There are 6 domain specific hubs for each research field:

➢ Matter

➢ Energy

➢ Earth and Environment

➢ Health

➢ Aeronautics, Space and Transport

➢ Information

|

What can you say about this data?

4

What is Data?

|

What is data?

6

|

This is data

7

|

This is data

GLYPHS

8

|

This is data

POTENTIALLY
INFORMATIVE OBJECT

9

|

Information – the human-readable data

10

|

Knowledge – Where is the cathedral?

11

|

Information pyramid

+ context

+ meaning

+ insight

Data is potential information and

needs to be processed to make it

accessible for the human

audience.

12

|

|

Example data - What it really shows

Time

14

|

Example data - What it really shows

Time

Biomechanical

acceleration

Pendrill, A.-M., Eager, D.(2020). “Velocity, acceleration, jerk,

snap and vibration: forces in our bodies during a roller coaster

ride.” Phys. Educ. 55 065012
https://apparentlysew.weebly.com/stem-blog/category/roller-coaster

15

|

Example data - What it really shows

Time

Biomechanical

acceleration

Scream

detected

Pendrill, A.-M., Eager, D.(2020). “Velocity, acceleration, jerk,

snap and vibration: forces in our bodies during a roller coaster

ride.” Phys. Educ. 55 065012

16

What is Metadata?

| 18

| 19

|

metadata

by Jeff

Something

20

| 21

| 22

Descriptive, administrative, structural metadata

| 24

|

Description

- Publication year

- Author

- Title

- Publisher /

Series

- Keywords

- Persistent

Identifier

25

|

Description

- Publication year

- Author

- Title

- Publisher /

Series

- Keywords

- Persistent

Identifier

26

|

Description

- Publication year

- Author

- Title

- Publisher /

Series

- Keywords

- Persistent

Identifier

Administration

- Distribution

- Responsibility

- Conditions

27

|

Description

- Publication year

- Author

- Title

- Publisher /

Series

- Keywords

- Persistent

Identifier

Administration

- Distribution

- Responsibility

- Conditions

Legal terms

- Copyright issues

- Terms of

distribution

28

|

Description

- Publication year

- Author

- Title

- Publisher /

Series

- Keywords

- Persistent

Identifier

Administration

- Distribution

- Responsibility

- Conditions

Legal terms

- Copyright issues

- Terms of

distribution

Structure

- Content

- Chapters

- Pages

29

|

Descriptive Metadata:

Metadata that provides information to identify and describe a resource, such as its title, author,

and keywords.

Administrative Metadata:

Metadata used to manage a resource, including details like rights, licensing, and file creation

dates.

Structural Metadata:

Metadata that outlines how a resource is organized, such as its chapters, sections, or

relationships between components.

|

Description

- Publication year

- Author

- Title

- Publisher /

Series

- Keywords

- Persistent

Identifier

Administration

- Distribution

- Responsibility

- Conditions

Legal terms

- Copyright issues

- Terms of

distribution

Structure

- Content

- Chapters

- Pages

31

or metainformation

is structured data that contains

information about characteristics of

other data (objects).

METADATA

|

Questions?

Questions?

|

Metadata in a paper
Demonstration

www.helmholtz-metadaten.de

Metadata Annotation in the

Scientific Context

|

YYYou should start
your project with
repeating your
collaborator's
results

35

|

The Publication
YYYou should start
your project with
repeating your
collaborator's
results

36

|

The Data
YYYou should start
your project with
repeating your
collaborator's
results

37

|

The Documentation

38

|

Quote: Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452 – 454 (2016). https://doi.org/10.1038/533452a

Image: https://www.booksmith.com/event/bindery-launch-katie-burke-urban-playground-what-kids-say-about-living-san-francisco

„More than 70 % of researchers have
tried and failed to reproduce another
scientist’s experiments.

More than half have failed to reproduce
their own experiments. “

Monya Baker

39

|

Slightly better – lab notes

csv someRandomFileName.csv

40

|

Slightly better – lab notes

20220228_recordingData.csvcsv

41

|

Slightly better – lab notes

20220228_recordingData.csvcsv

42

|

Slightly better – lab notes

20220228_recordingData.csvcsv• some kind of documentation

• unstructured

• hard to find

• seperated from data

• hard to share / only in the

possession of the experimentator

• frequently hard to read

43

|

Gregor Mendel, the father of genetics

Do you know why Mendel’s work was largely

ignored until 1900, more than 30 years after his

death?

|

Other scientists couldn’t fully understand and

validate his findings

Mendel did not provide sufficient details in his

notes about

● his experimental design or

● some of the intermediate steps in his

calculations

Without this detailed “metadata”, it was difficult for

other scientists to replicate his work or even fully

appreciate its significance.

https://www.nature.com/articles/s41588-022-01109-9/figures/1

https://www.nature.com/articles/s41588-022-01109-9/figures/1

|

20220228_recordingData.csvcsv

Even better – Readme style metadata

46

|

20220228_recordingData.csv

20220228_recordingData_Readme.txttxt

csv

Even better – Readme style metadata

47

|

Even better – Readme style metadata

20220228_recordingData.csv

20220228_recordingData_Readme.txttxt

csv

48

|

Human readable metadata: README file

README files can be considered a human-readable form of metadata recording.

This information helps users understand how to properly work with or reuse the data/code:

● Name of the data document

● Title

● Author information

● The date the files were created

● Data fields/units

● PIDs

● Instrument info

● Sample info

● Date the files were last updated

● Version etc.

|

Even better – Readme style metadata

20220228_recordingData.csv

20220228_recordingData_Readme.txttxt

csv

20220228_recordingData_Readme.txttxt

Results

Flight of the bat

50

|

Even better – Readme style metadata

20220228_recordingData.csv

20220228_recordingData_Readme.txt

• documentation linked to the

data

• locally searchable

• Readme file can be shared with

the data

• increased readability

• unstructured

• subjective information

• only keyword search possible

51

|

Metadata in repositories

While uploading your data to a repository, you also

enter the metadata into the system,

just like you would when using Zenodo>>>

But there might be no field to define the variables in the

dataset so we can include a readme file along with the

dataset!

| 53

if you are interested in YAML,

also see https://yaml.org/

XML JSON YAML
{

"superhero": "Wonder Woman",

"publisher": "DC Comics",

"identities": [

"Princess Diana",

"Diana Prince"

],

"pet": {

"name": "Jumpa",

"species": "kangaroo"

}

}

<example>

<superhero>Wonder Woman</superhero>

<publisher>DC Comics</publisher>

<identities>

<identity>Princess Diana</identity>

<identity>Diana Prince</identity>

</identities>

<pet>

<name>Jumpa</name>

<species>kangaroo</species>

</pet>

</example>

superhero: Wonder Woman

publisher: DC Comics

identities:

- Princess Diana

- Diana Prince

pet:

name: Jumpa

species: kangaroo

Widely used formats for machine-readable metadata

|

Questions?

Questions?

Metadata Standard and Schema

|

Metadata Standards

This is a photo of my morning coffee >>>

● My phone also records the metadata attached to this

photo.

● Exchangeable image file format (EXIF)

○ is most widely used metadata standard for images.

○ is embedded in image files by digital cameras and smartphones.

● These standards ensure that metadata is structured and

used consistently across different platforms, software, and

devices.

|

Metadata Standards

They are all in EXIF Metadata Standard:

|

Metadata Standards

IPTC

XMP EXIF

| 59

The Dublin Core

One of the best-known, generic, and widely used

metadata standard for online resources, is the

Dublin Core.

The Dublin Core was developed by a consortium of

researchers, librarians, and web technologists in

1995, to address the need for a unified description

of web resources.

Creator

Contributor

Publisher

Title

Date

Language

Format

Subject

Description

Identifier

Relation

Source

[1] https://www.dublincore.org/resources/metadata-basics/

[2] https://www.dublincore.org/specifications/dublin-core/dcmi-terms/#section-3

[3] https://www.dublincore.org/about/

[4] https://www.iso.org/standard/71339.html

59

| 60

https://www.science.org/

Dublin Core

Elements

|

Metadata schemas

61

Metadata schemas define the structure and fields for metadata, often built on a

standard.

|

Key Difference

A standard defines what metadata to include:

● Dublin Core: Includes elements like title, creator, subject, date, description, etc,

● EXIF Metadata Schema: Includes fields like File Name, File Type, Model, Date/Time, etc.

A schema defines how the metadata is structured and formatted:

● Relationships between fields,

● Defining required or optional fields,

● Date: YYYY-MM-DD (ISO 8601 format),

● Name: Last Name, First Name,

● Keywords: A list separated by commas or semicolons.

62

|

Zenodo new upload form - schemas define the structure and fields for metadata

asterisks indicate

mandatory entries

entry format

controlled list

63

|

Human-readable input (form fields) translates into machine-readable metadata

{
“Files”: “metadatabeginners.pptx”,
“Resource type”: “Presentation”,
“Title”: “Metadata for Beginners”,
“Publication date”: “2024-11-24”,
“Creators”: “Dr. Özlem ÖZKAN”

}

newdatasubmission.json

64

|

Domain-relevant community standards

Data should meet domain-relevant community standards!

Many disciplines have created

o metadata standards for describing data,

o created lists of recommended file formats etc.

Keeping in line with these standards will lead new data out into the ecosystem of data that is

easy and suitable for others to reuse.

|

Interoperability: NASA’s Mars Climate Orbiter Mishap

The failure of NASA's Mars Climate Orbiter in 1999

● The engineering team at Lockheed Martin used

English units of measurement (pounds-force),

● while the NASA team expected data in metric units

(newtons).

1 Newton ≈ 0.224809 pounds-force (lbf)

Consequence:

The orbiter entered the atmosphere at a much lower

altitude than intended, leading to its destruction by

atmospheric stresses and heat.

Loss: $327.6 million

|

What about research field matter?

NeXus is an open community standard!

the NeXus International Advisory Committee

(NIAC) (since 1994)

It functions both as a

data format and a metadata standard

particularly in neutron, X-ray, and muon

research.

Pre-defined keys

Data Type

Meaning

https://manual.nexusformat.org/classes/base_classes/NXsource.html

[]

https://manual.nexusformat.org/classes/base_classes/NXsource.html

|

What about research field matter?

ExPaNDS project report (2022),

● defined the necessary metadata

elements for Photon and Neutron

(PaN) facilities >>>

(these elements are aligned with other

open standards, like NeXus)

https //doi.org/10.5281/zenodo.6821676

P1: essential

P2: important

P3: useful

https://doi.org/10.5281/zenodo.6821676

|

Funded by:The authors acknowledge the OSCARS project, which has

received funding from the European Commission’s Horizon

Europe Research and Innovation programme under grant

agreement No. 101129751

Metadata for nuclear physics experiments: NAPMIX

The NAPMIX project emerged to address a significant gap in nuclear physics: the lack of a unified metadata schema necessary for

achieving FAIR datasets. This challenge extends to the fields of particle and astro-particle physics, highlighting the need for a

collaborative European effort to create a common metadata schema with user-friendly infrastructure. By integrating expertise across

these domains, NAPMIX aims to enhance data management practices.

https://www.oscars-project.eu/projects/napmix-nuclear-astro-and-particle-metadata-integration-experiments

https://www.oscars-project.eu/projects/napmix-nuclear-astro-and-particle-metadata-integration-experiments

|

Questions?

Questions?

|

fairsharing.org

JSON
step-by-step

|

The JSON object

john.jsonjson

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

73

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

Objects are

enclosed in curly

braces

json

74

|

The JSON object

john.json

Information is

stored in
“key”: “value”
pairs

json

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

75

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

Information is

stored in
“key”: “value”
pairs

keys are of

datatype string

json

76

|

The JSON object

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

77

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.jsonjson

values must be

one of the following

data types:

string

number

boolean

null

array

object

78

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.jsonjson

values must be

one of the following

data types:

string

number

boolean

null

array

object

strings are any kind of characters

enclosed in “ “

• “word”

• “This is also a string.”

• “7 bananas”

79

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

80

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json john.json

• integers (e.g. 42)

• floats (e.g. 0.0005)

numbers can be:

81

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

82

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

a boolean has one of two possible

values

• true / false

• 1 / 0

83

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

84

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

null can only have the value NULL.

The variable of data type null has

no value assigned to it.

85

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

86

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

An array is a collection of elements.

Can be understood as a list.

• [“Bibi”, “Tina”]

• [1,2,3]

• [“some string”, 0.5, true]

87

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

88

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

values must be

one of the following

data types:

string

number

boolean

null

array

object

json

An object contains key/value pairs,

seperated by commata and is

enclosed by { }

{”name”: “Bill”,

“jobTitle”: ”Postdoc”,

“city”: “New York”,

“age”: 36}

89

|

The JSON object

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

Data is

separated by

commas

json

90

|

The JSON object - indentation

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.jsonjson

91

|

Structured metadata: JSON vs. XML

{
“name”: “John”,
“age”: 27,
“employed”: true,
“hasCar”: null,
”parents”: [“Anna”, “Michael”],
“pet”: {

“name”: “Brutus”,
“species”: “dog”,
“age”: 7

}
}

john.json

<name>John</name>
<age>27</age>
<employed>TRUE</employed>
<hasCar>NULL</hasCar>
<parents>Anna</parents>
<parents>Michael</parents>
<pet>

<name>Brutus</name>
<species>dog</species>
<age>7</age>

</pet>

john.xmljson xml

92

|

Coding

Thanks

	Slide 1
	Slide 2: Who am I?
	Slide 3: Helmholtz Metadata Collaboration - Mission
	Slide 4: What can you say about this data?
	Slide 5: What is Data?
	Slide 6: What is data?
	Slide 7: This is data
	Slide 8: This is data
	Slide 9: This is data
	Slide 10: Information – the human-readable data
	Slide 11: Knowledge – Where is the cathedral?
	Slide 12: Information pyramid
	Slide 13
	Slide 14: Example data - What it really shows
	Slide 15: Example data - What it really shows
	Slide 16: Example data - What it really shows
	Slide 17: What is Metadata?
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Descriptive, administrative, structural metadata
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Metadata Annotation in the Scientific Context
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Slightly better – lab notes
	Slide 41: Slightly better – lab notes
	Slide 42: Slightly better – lab notes
	Slide 43: Slightly better – lab notes
	Slide 44
	Slide 45
	Slide 46: Even better – Readme style metadata
	Slide 47: Even better – Readme style metadata
	Slide 48: Even better – Readme style metadata
	Slide 49: Human readable metadata: README file
	Slide 50: Even better – Readme style metadata
	Slide 51: Even better – Readme style metadata
	Slide 52: Metadata in repositories
	Slide 53
	Slide 54
	Slide 55: Metadata Standard and Schema
	Slide 56: Metadata Standards
	Slide 57: Metadata Standards
	Slide 58: Metadata Standards
	Slide 59: The Dublin Core
	Slide 60
	Slide 61: Metadata schemas
	Slide 62: Key Difference
	Slide 63: Zenodo new upload form - schemas define the structure and fields for metadata
	Slide 64: Human-readable input (form fields) translates into machine-readable metadata
	Slide 65: Domain-relevant community standards
	Slide 66: Interoperability: NASA’s Mars Climate Orbiter Mishap
	Slide 67: What about research field matter?
	Slide 68: What about research field matter?
	Slide 69
	Slide 70
	Slide 71
	Slide 72: JSON
	Slide 73: The JSON object
	Slide 74: The JSON object
	Slide 75: The JSON object
	Slide 76: The JSON object
	Slide 77: The JSON object
	Slide 78: The JSON object
	Slide 79: The JSON object
	Slide 80: The JSON object
	Slide 81: The JSON object
	Slide 82: The JSON object
	Slide 83: The JSON object
	Slide 84: The JSON object
	Slide 85: The JSON object
	Slide 86: The JSON object
	Slide 87: The JSON object
	Slide 88: The JSON object
	Slide 89: The JSON object
	Slide 90: The JSON object
	Slide 91: The JSON object - indentation
	Slide 92: Structured metadata: JSON vs. XML
	Slide 93
	Slide 94: Thanks

