

Radim Dvořák

QN Radim Dvořák FNSPE CTU

Setup

- Full CBM geometry
- 12 AGeV collisions
- DCM-QGSM model
- No beam
- Event based

Radim Dvořák

QN analysis

- FSD 2 cm, granularity 1x1 cm, hole r5 cm
- Cut dE/dx > 3 MeV
- IN = 10-20 cm, MID = 20-40 cm, OUT = 40-80 cm

Comparison with PSD

• Approximately 5 times smaller correlation in FSD

Radim Dvořák

Add info in sim particles

- Now we can select only particles which track has FSD point
- Weight to QN can be Q^2

track.SetMomentum(mctrack->GetPx(), mctrack->GetPy(), mctrack->GetPz()); track.SetMass(float(mctrack->GetMass())); track.SetPid(int(mctrack->GetPdgCode())); track.SetField(int(mctrack->GetGeantProcessId()), igeant_id_); track.SetField(int(mctrack->GetNPoints(ECbmModuleId::kMvd)), in_hits_); track.SetField(int(mctrack->GetNPoints(ECbmModuleId::kSts)), in_hits_ + 1); track.SetField(int(mctrack->GetNPoints(ECbmModuleId::kTrd)), in_hits_ + 2); track.SetField(int(mctrack->GetUniqueID()), icbm_id_); track.SetField(float(mctrack->GetCharge()*mctrack->GetCharge()), icharge2_); track.SetField(int(mctrack->GetNPoints(ECbmModuleId::kFsd)), in_points_fsd_);

QN

Simulated particles

- P > 1 GeV
- Number of FSD points per MC track = 1
- Weight of the sim particles = charge2
- FSD see almost maximum of what it can see

Radim Dvořák

Charged particles vs neutrons

- Neutrons in rapidity 2.2-3.6 (QN weights of neutrons = ones)
- Most of the information is carried by neutrons

Radim Dvořák

Diffrent hole sizes

- Biggest difference hole $r = 5 \text{ cm} \rightarrow r = 10 \text{ cm}$
- 10% difference r = 10 cm -> r = 15 cm

Granularity

• NO significant difference between granularity 1x1 cm vs 6x6 cm

Radim Dvořák

1x1cm (r5) vs 6x6 (r6) - IN

- Compared to resolution from SIM particles (P>1GeV, point in FSD)
- No difference between different granularities in IN part

1x1cm (r5) vs 6x6 (r6) - MID

Radim Dvořák

1x1cm (r5) vs 6x6 (r6) - OUT

Radim Dvořák

