

Unravelling the phase structure of strong-interaction matter with CBM

Tetyana Galatyuk, GSI / Technische Universität Darmstadt

R3B Collaboration Meeting July 11, 2024 GSI, Darmstadt

Objective

Decode the phases of nuclear matter in the non-perturbative regime of QCD

Unravel the role of the strong interaction in the evolution of our universe

Jul 11, 2024

Objective

Decode the phases of nuclear matter in the non-perturbative regime of QCD

Unravel the role of the strong interaction in the evolution of our universe

Nature of phase transitions in strong-interaction matter?

Jul 11, 2024

Neutron star

$$\label{eq:main_states} \begin{split} \mathbf{M} &\sim \mathbf{1.4} - \mathbf{2} \ \mathbf{M}_{\odot} \\ \mathbf{R} &\sim \mathbf{12} \ \mathbf{km} \\ \mathbf{T} &\sim \mathbf{keV} \\ \boldsymbol{n} &\lesssim \mathbf{10} \ \boldsymbol{n}_{sat} \end{split}$$

Matter properties in compact stellar objects?

Method

Recreate various forms of cosmic matter in laboratory \rightarrow high-energy heavy-ion collisions Investigate transient states of QCD matter under extreme conditions

Method

Recreate various forms of cosmic matter in laboratory \rightarrow high-energy heavy-ion collisions Investigate transient states of QCD matter under extreme conditions

LHC energies $\sqrt{s_{NN}} = 2 - 5 TeV$ parton parton collisions $N_{particles} = N_{anti-particles}$

Jul 11, 2024

SIS energies $\sqrt{s_{NN}} = 2 - 5 \ GeV$ Nuclear stopping $N_{particles} \gg N_{anti-particles}$

Searching for landmarks of the QCD matter phase diagram

Jul 11, 2024

Experimental challenges:

- isolate unambiguous signals of new phases of QCD matter, order of phase transitions, conjectured QCD critical point
- probe microscopic matter properties

Measure with utmost precision:

- light flavour (chemistry, vorticity, flow)
- event-by-event fluctuations (criticality)
- dileptons (emissivity)
- charm (transport properties)
- hypernuclei (interaction)

Worldwide experimental and theoretical efforts Relevance for astrophysics

Chen, Dong, Fukushima, Galatyuk, *et al.*, doi:10.1007/978-981-19-4441-3_4 (2022)

Xiaofeng Luo - Qun Wang - Nu Xi Pengfei Zhuang - Editors

Properties

Density

of OCD Matter

at High Baryon

Multi-messenger signals from neutron star merger

Jul 11, 2024

 GW170817 17 Aug 2017 12:41:04 UTC First detection of a binary neutron star merger through gravitational waves

LIGO + VIRGO, PRL 119 (2017) 1611001

 GRB 170817A ~1,7 s later: Observation of the same event through electromagnetic waves (gamma-ray burst)

Fermi, INTEGRAL, Astrosat, IPN, Insight-HXMT, Swift, AGILE, CALET, H.E.S.S., HAWC, Konus-Wind

Laboratory studies of the matter properties in compact stellar objects

Laboratory studies of the matter properties in compact stellar objects

Jul 11, 2024

Remarkable consistency between multi-messenger observations and constraints from heavy-ion data

Laboratory studies of the matter properties in compact stellar objects

Jul 11, 2024

Jul 11, 2024

The quest for highest energy

Time \equiv advances in accelerator and detector technologies

6/27

The quest for utmost precision and sensitivity for rare signals

Jul 11, 2024

~25 years progress in technology since AGS (begin of high μ_B explorations)

Time \equiv advances in accelerator and detector technologies

 $\sqrt{s_{NN}}$ (GeV)

<u>Compressed Baryonic Matter experiment</u>

Jul 11, 2024

315 full members from 10 countries47 full member institutions10 associated member institutions

- Fixed target experiment
 → obtain highest luminosities
- Versatile detector systems
 → optimal setup for given observable
- Tracking based entirely on silicon
 → fast and precise track reconstruction
- Free-streaming FEE
 → nearly dead-time free data taking
- On-line event selection
 → highly selective data reduction

Q4 2027 – installation and commissioning w/o beam Q4 2028 – commissioning with SIS100 beam

CBM subsystems are on the verge of series production

➡ pre-production is ongoing in all systems

Jul 11, 2024

Beam monitoring system

Transition Radiation Detector

pre-production modules of 1D and 2D options ready

Micro Vertex Detector

Time of flight detector

module pre-production concluded

MUon CHamber system

test of full-size GEM and RPC prototypes

Silicon Tracking System

Forward Spectator Detector

ZnS scintillators and LYSO crystals read-out via SiPM or/and PMT

Ring Imaging Cherenkov detector

1 of 2 photo cameras ready 50% FEE produced

8/27

Prototype of CBM online data processing tests with mCBM

Some basic facts on extreme matter facilities

Jul 11, 2024

- **CBM** will play a unique role in the exploration of the QCD phase diagram in the region of high μ_B with rare and electromagnetic probes: high rate capability, **energy range 3** < $\sqrt{s_{NN}}$ < 5 GeV
- HADES: established thermal radiation at high μ_B , limited to 20 kHz and $\sqrt{s_{NN}}$ =2.4 GeV
- STAR FXT@RHIC: BES program completed; limited capabilities for rare probes
- CEE+@HIAF construction: multipurpose detector based on TPC, anticipated rate capability 500 kHz, anticipated start 2025
- Proposals: NA60+ at SPS, J-PARC-HI

Program needs ever more precise data and sensitivity for rare signals

Final state "hadron-chemistry"

HADRON PRODUCTION

Hadronization of the fireball

Andronic, Braun-Munzinger, Redlich, Stachel, Nature 561 (2018) no.7723

- Analysis of hadron yields within the statistical (thermal) model
- Test hypothesis of hadron abundancies in equilibrium $\rightarrow T_{CF}, \mu_B, V$

• ALICE at LHC:

- grand canonical partition function
- essentially 1 free parameter \rightarrow temperature T_{CF}

 $T_{CF} = 156.5 \pm 1.5 \pm 3$ MeV (sys)

Agreement over 9 orders of magnitude with QCD statistical operator prediction!

- matter and antimatter are formed in equal portions
- noticeably, loosely-bound objects follow the same systematics

Energy dependence of T and μ_B

Hadron yields produced in central heavy-ion collisions from LHC down to SIS18 energies well described by statistical ensemble

- Factor 1000 in beam energy ↔ factor ~2 in temperature
- Thermal fits exhibit a limiting temperature ($\sqrt{s_{NN}} \ge 12$ GeV): $T_{lim} = 158.4 \pm 1.4$ MeV Andronic, Braun-Munzinger, Stachel, PLB 673 (2009) 142
- ALICE result is in remarkable agreement with the pseudo-critical temperature from lattice QCD $T_{pc} = 156.5 \pm 1.5 \text{ MeV}$ Bazavov *et al.* [HotQCD], PLB 795 (2019) 15-21 $T_{pc} = 158.0 \pm 0.6 \text{ MeV}$ Borsanyi *et al.* [Wuppertal-Budapest], PRL 125 (2020)
- Chiral crossover at $\mu_B = 0$ may turn into a first-order phase transition at finite μ_B
- QCD critical point is awaiting discovery

Quest for critical phenomenon connected to the 1st order phase transition

CRITICALITY

Probing criticality with fluctuations

Critical phenomena discovered ~200 years ago by Cagniard de la Tour, using steam digester invented by Denis Papin in 1679

Ann. Chim. Phys., 21 (1822) 127-132

$$\frac{\langle \rho^2 \rangle - \langle \rho \rangle^2}{\langle \rho \rangle^2} = \frac{T \chi_T}{V} \qquad \chi_T = -\frac{1}{V \left(\frac{\partial P}{\partial V}\right)_T}$$

- Increase in density fluctuations near T_c
- At T_c thermal susceptibility χ_T diverges

Critical point predictions from theory

Jul 11, 2024

¹DSE: Bernhardt, Fischer and Isserstedt, PLB 841 (2023)
 ²FRG: Fu, Pawlowski, Rennecke, PRD 101, 053032 (2020)
 ³BHE: Hippert et al., arXiv:2309.00579
 ▲ 4FSS: Sorensen and Sorensen, arXiv:2405.10278 [nucl-th]
 ⁶IQCD-Pade: Basar, arXiv:2312.06952
 ⁶IQCD-Pade: Clarke *et al.*, PoS LATTICE2023 (2024), 168

Bazavov et al. [HotQCD], PLB 795 (2019) 15-21 Borsanyi et al. [Wuppertal-Budapest], PRL 125 (2020)

- Lattice QCD disfavours QCD critical point at $\mu_B/T < 3$
- Effective QCD theories^[1-3] and lattice-Pade^[5,6] predict QCD critical point in a similar ballpark $T \sim 90 120 \text{ MeV}$, $\mu_B \sim 500 650 \text{ MeV}$
- If true, reachable in heavy-ion collisions at $\sqrt{s_{NN}} \sim 3 5 \text{ GeV}$
- Including possibility that the QCD critical point does not exist

Cuteri, Philipsen, Sciarra, JHEP 11 (2021) 141 Vovchenko *et al.*, PRD 97, 114030 (2018)

Event-by-event fluctuations and statistical mechanics

- In strong interactions, baryons, electrical charges and strangeness are conserved ($q \in \{B, Q, S\}$)
- Event-by-event fluctuations of q predicted within grand canonical ensemble

Jul 11, 2024

cf. Friman *et al.*, EPJC 71 (2011) 1694 Stephanov, RPL 107 (2011) 052301

 $\frac{\kappa_n(N_q)}{VT^3} = \frac{1}{VT^3} \frac{\partial^n \ln Z(V, T, \vec{\mu})}{\partial (\mu_q/T)^n} = \frac{\partial^n \hat{P}}{\partial \hat{\mu}_q^n} \equiv \hat{\chi}_n^q$

 κ_n - cumulants (measurable in experiment) $\hat{\chi}_n^q$ - susceptibilities (e.g. from IQCD)

Higher order cumulants describe the shape of measured distributions and quantify fluctuations

Variance
$$\kappa_2 = \langle (\delta N)^2 \rangle = \sigma^2$$
Skewness $\kappa_3 = \langle (\delta N)^3 \rangle$ Kurtosis $\kappa_4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N^2) \rangle^2$

QCD critical point: large correlation length and fluctuations

 $\kappa_2 \sim \xi^2$, $\kappa_3 \sim \xi^{4.5}$, $\kappa_4 \sim \xi^7$

- $\xi \rightarrow \infty$ diverges at critical point
- ➡ Look for enhanced fluctuations and non-monotonicity

Stephanov, RPL 107 (2011) 052301

17/27

Measuring cumulants in heavy-ion collisions

• Count the number of events with given number of e.g. net-protons

Jul 11, 2024

• Look for subtle critical point signals \rightarrow critical signal is in these distributions

Critical point search

Non-monotonic trend of the higher moments κ_4/κ_2 of net-proton number distributions, visible in a beam energy scan?

Braun-Munzinger, Friman, Redlich, Rustamov, Stachel, NPA 1008 (2021) 122141

- Current data consistent with non-critical physics?
 → reduced errors from STAR BES-II
- Sensitivity to features of the QCD phase diagram grows with the order of the moment
- Higher order moments probe the tails statistics/artefacts!
- Detailed systematic studies of experimental effects is curtail

Holzmann, Koch, Rustamov, Stroth, arXiv:2403.03598 [nucl-th] Kitazawa'2012, Skokov'2013, Bzdak '2016, Kitazawa'2016, Braun-Munzinger'2017

Electromagnetic radiation

EMISSIVITY

Electromagnetic radiation as multi-messenger of fireball

Electromagnetic radiation (γ , γ^*)

Jul 11, 2024

Reflect the whole history of a collision

No strong final state interaction \sim leave reaction volume undisturbed

Encodes information on matter properties enabling unique measurements

- degrees of freedom of the medium
- fireball lifetime, temperature, acceleration, polarization
- transport properties
- restoration of chiral symmetry

Thermal dilepton measurements

- Dileptons are rare probes!
- Decisive parameters for data quality: interaction rates (*IR*) and signal-to-combinatorial background ratio (*S*/*CB*): effective signal size: *S_{eff}* ~ *IR* × *S*/*CB*
- Needs coverage of mid-rapidity, low- $M_{\ell\ell}$, and low-p
- Isolation of thermal radiation by subtraction of measured decay cocktail (π⁰, η, ω, φ), Drell-Yan, cc̄ (bb̄)

22/27

HADES, Nature Phys. 15 (2019) 1040

Jul 11, 2024

McLerran - Toimela formula, Phys. Rev. D 31 (1985) 545

- Thermal excess radiation established at HADES (Au+Au, Ag+Ag)
 - ρ -meson peak undergoes a strong broadening in medium
 - in-medium spectral function from many-body theory consistently describes SIS18, SPS, RHIC, LHC energies

Rapp and Wambach, Adv.Nucl.Phys. (2000) 25

Baryonic effects are crucial

Jul 11, 2024

Integrated low-mass excess yield radiation 0.3 < M < 0.7 GeV/c² tracks the fireball lifetime

Heinz and Lee, PLB 259, 162 (1991) Barz, Friman, Knoll and Schulz, PLB 254, 315 (1991) Rapp, van Hees, PLB 753, 586 (2016)

 CBM, NA60+ performance studies with realistic detector geometries, material budget, response, S/B and statistics → precision 1.5 – 4.5%

- Search for emerging signatures indicative of a 1st order phase transition (and critical point?):
 - prolonged lifetime of the system due to latent heat →
 "excess excess-radiation"?

Dilepton signature of a 1st order phase transition

Seck, TG, Mukherjee, Rapp, Steinheimer, Stroth, Wiest, PRC 106 (2022) 1, 014904

Savchuk, TG, et al., J.Phys.G 50 (2023) 12, 125104 Li and Ko, PRC 95 (2017) no.5, 055203 Tripolt et al., NPA 982 (2019) 775

- Ideal hydro simulations with and w/o 1st order nuclear matter – quark matter phase transition
- Chiral Mean Field model that matches lattice QCD at low μ_B and neutron-star constraints at high density

Most et al., PRD 107 (2023) 4, 043034

Dilepton emission shows a significant effect: factor 2 enhancement of dilepton emission due to extended "cooking"

See also

25/27

Mapping the QCD "caloric curve" (T vs ε)

Invariant mass slope measures true (no blue shift!) radiating source temperature:

 $\frac{dR_{ll}}{dM} \propto (MT)^{\frac{3}{2}} \exp(-\frac{M}{T})$

• Search for flattening of caloric curve $(T \text{ vs } \varepsilon) \rightarrow$ evidence for a **phase transition**

25/27

Mapping the QCD "caloric curve" (T vs $\boldsymbol{\epsilon}$)

Invariant mass slope measures true (no blue shift!) radiating source temperature:

 $\frac{dR_{ll}}{dM} \propto (MT)^{\frac{3}{2}} \exp(-\frac{M}{T})$

• Search for flattening of caloric curve $(T \text{ vs } \varepsilon) \rightarrow$ evidence for a **phase transition**

Signature for chiral symmetry restoration: $\rho - a_1$ chiral mixing

Jul 11, 2024

Spontaneously broken in the vacuum

Restoration at finite *T* and μ_B manifests itself through mixing of vector and axial-vector correlators

^{ho} meson melts, a_1 mass decreases and degenerates with near ground-state mass

CBM energies: negligible correlated charm contribution, decrease of QGP, Drell-Yan contribution?

Summary: The future is bright!

Encouraging prospects for studying extreme matter at high μ_B with CBM

Challenges

- rare and statistics "hungry" observables, systematic effects
- many aspects nature of transitions between the various phases, relevant EoS, spectral properties of hadrons in the medium, collective and transport properties of the medium, ... – await a better understanding

Opportunities

- discoveries, EoS of dense matter and connection to violent stellar processes
- development of forefront detector technologies
- Success through perfect teamwork of experts in many fields (accelerators, detectors, high-performance computing, data analysis and interpretation)
- ➡ Understand quantitatively the microscopic properties of baryon-rich matter
- \blacktriangleright Complementary program on exclusive measurements in π , p induced reactions with HADES and CBM

Thank you for your attention!

Bonus slides

High μ_B instruments

HADES at SIS18 (running)

rate [Hz]

CBM@FAIR SIS100

Heavy ion collisions

MPD at NICA

NA61/SHINE at SPS (running)

NA60+ at SPS (>2030, after LHC LS3)

STAR at RHIC (completed)

HIAF in China

CEE+ at HIAF (2027)

CBM/HADES at SIS100 (2028)

© GSI/FAIR, Zeitrausch

37/27

First measurement of massive γ^* emission from N^* baryon resonances (exclusive analysis $\pi^- p \rightarrow e^+ e^- n$)

Jul 11, 2024

Ramalho, Pena, PRD95 (2017) 014003 Zetenyi, Nitt, Buballa, TG, PRC 104 (2021) 1, 015201 Speranza *et al.*, PLB764 (2017) 282

- Study the structure of the nucleon as an extended object (quark core and meson cloud)
- Dominance of the $N^*(1520)$ resonance at $\sqrt{s_{NN}} = 1.49$ GeV
 - ρ meson as "excitation" of the meson cloud
 - Vector Meson Dominance basis of emissivity calculations for QCD matter

CBM dielectron performance (first year, 5 days / energy)

Isolated dielectron thermal radiation yield, corrected for acceptance x efficiency:

Jul 11, 2024

- Dominated by ρ contribution at low mass ($M_{\ell\ell}$ <1GeV/ c^2); can be reconstructed with precision of 1.5 4.5%
 - allows fireball lifetime measurement
 - transport properties electrical conductivity? $\sigma_{el}(T) = -e^2 \lim_{q_0 \to 0} \frac{\delta}{\delta q_0} Im \Pi_{em}(q_0, q = 0; T)$
- Intermediate mass range ($M_{\ell\ell}$ >1GeV/ c^2) accessible, statistics will not (yet) be sufficient to extract physics

from partonic to hadronic fireballs

Low-mass low-momentum dileptons

 Color superconductivity could manifest itself in an enhanced yield of low-energy dileptons

Jul 11, 2024

Nishimura et al., PTEP 2022 (2022) 9, 093D02

 Transport properties of the medium - electrical conductivity can be directly obtained from the low-energy limit of the EM spectral function (at vanishing momentum)

$$\sigma_{el}(T) = -e^2 \lim_{q_0 \to 0} \frac{\delta}{\delta q_0} Im \Pi_{em}(q_0, q = 0; T)$$

Kubo, J. Phys. Soc. Jap. 12 (1957) 570-586 Moore, Robert, arXiv:hep-ph/0607172 (2006) Atchison, Rapp, NPA 1037 (2023) 122704 Flörchinger *et al.*, PLB 837 (2023) 137647 Nishimura, Kitazawa, Kunihiro, arXiv:2312.09483 [hep-ph]

Non-monotonic trend of σ_{el} as the phase transition occurs? visible in a beam energy scan?

39/27

Geurts, Tripolt, PPNP 128 (2023) 104004

impact of the

scrutinized

effects is being

TOF

1.5

Performance studies in CBM

Jul 11, 2024

- Corrections for volume fluctuations and conservation laws
- Event-by-event changes of efficiency
- Proper selection of $p_{\rm T}$ y bite
- (Net-)baryons vs. protons, neutrons, nuclei

Crucial: centrality determination with independent detector \rightarrow avoids bias on e-b-e fluctuation observables

Studies employing FSD centrality detector ongoing

Low $p_{\rm T}$ and midrapidity coverage for all energies

0.5

Reconstruction efficiency allows for precision measurement of cumulants

CBM after 3 years of running:

- completion of the excitation function for $\kappa_4(p)$
- first results on $\kappa_6(p)$
- extension into strangeness sector $\kappa_4(\Lambda)$

40/27

NA61++: κ_4/κ_2 is universally negative when the critical point is approached on the crossover side \rightarrow Pb-Pb data crucial to establish/verify the non-monotonic trend

Statistics sufficient to study derivatives of order > 0(4)

Charm (c, \overline{c}) of the baryon-rich matter

IN-MEDIUM QCD FORCE

What is so "charming" about charm?

Scardina et al., PRC96, 044905 (2017) HotQCD, PRL 132 (2024) 5, 051902

Heavy quarks

- produced in initial hard scattering processes
- experience the full evolution of the QCD medium

→ probe in-medium QCD force!

- heavy-quark potential accurately known in the vacuum (Ψ , Υ spectroscopy)
- $\mu_B = 0$, finite T heavy-quark potential is modified (screened), guidance from LQCD

How is the fundamental QCD force screened at $\mu_B > 0$?

Consequences for heavy-quark transport

 $\sqrt{s_{NN}}$ ~6 GeV (and below) increased sensitivity to hadronic medium effects – important input for precision measurements at LHC

Chemistry, vorticity, flow

EQUATION OF STATE

44/27

Collective flow and polarization of Λ , $\overline{\Lambda}$ and Ξ^- in CBM

• Excellent phase space coverage $(y_{CM} \text{ coverage for all } \sqrt{s_{NN}})$

Jul 11, 2024

- Reconstruction efficiency ~30%
- Event plane resolution $\Re 1 \cong 0.8, \ \Re 2 \cong 0.5$

- Precision measurement of spectra and flow pattern (no data for Ξ, Ω available below AGS energies)
- Superior CBM performance to the STAR-FXT flow measurements

- Measurement of polarization of Λ and Ξ⁻ with precision of 5%
- Mapping of the excitation function for $\overline{\Lambda}$ requires $\geq 10^{13}$

Nuclei and hyper-nuclei production

Jul 11, 2024

Ab initio calculation of hyper-neutron matter

- How do nuclei and hyper-nuclei form?
- What are their properties?
- How do YN and YY interact?

Crucial for neutron star physics EoS of high density matter

three-body hyperon-nucleon interaction plays a fundamental role in the softening of the EoS

CBM performance

CBM collision energies optimal for hypernuclei production

- CBM high interaction rates and clean identification allow precision measurements of single- and double Λ-hypernuclei
 - spectra and flow pattern
 - complex structure via Dalitz plot
 - life-time (particularly sensitive to YN and YY interaction)
- Search for the new hyper-nucleus or charmed nucleus ${}^{4}_{D}He$

Dover, Kahana, PRL 39, 1506, 1977 Xu, Lin, Yang in preparation

