

Coulomb Dissociation of ¹⁶O into ¹²C and ⁴He Status of Analysis s494

L. Bott, M. Heil, A. Kelić-Heil

R³B collaboration meeting Darmstadt, July 2024

Coulomb dissociation of ¹⁶O

• detect ¹²C and ⁴He

larger (γ,α) cross section than direct measurement

• high intensity (~ $10^9 s^{-1}$) ¹⁶O beam

Reminder - Setup s494

Status at the meeting last year:

- All detectors included in the analysis
- Started analysis on GSI HPC cluster
- Started comparing tracking results with theoretical model from Stefan Typel (cdxsp)

What has been done since the last meeting:

- Improved tracking and analysis
- New cdxsp model
- Improved simulations
- Analysis and optimization of magnetic field
- Comparison with the cdxsp theoretical model

Improved tracking & GLAD field map

Improved tracking & GLAD field map

Energy spectra for different targets

- Coulomb dissociation events for all targets
- Contribution from excited state of ¹²C^{*} is subtracted in the next step

Improve simulation

Comparison with simulation

Comparison with theory - cdxsp model from Stefan Typel

preliminary results after starting to adjust parameters

standard parameter as starting point

Comparison with theory - cdxsp model from Stefan Typel

- below grazing angle
- contribution from excited states sutracted

Comparison of S-factor with previous data

results using the old cdxsp code

Comparison of S-factor with previous data

results using the new cdxsp code

Influence of the energy resolution

Outlook

- Redo calibrations of tracker (detector positions)
- Check excited-state subtraction
- Check relative energy resolution
- Separation of E1 and E2 contributions
- Detailed comparison with theory, including not only relative energy but also other observables

High count rate on Fiber detectors...

He efficiency of Fiber detectors:

High count rate on Fiber detectors...

events $\chi^2 < 10$

Geometrical acceptance

Energy spectra for different targets

- Coulomb dissociation events for all targets
- Contribution from excited state of ¹²C^{*} is subtracted in the next step

E1 && E2 separation

Magnetic field parameters

- New parameters of the Glad field:

{x/cm, y/cm, z/cm, angleX/deg, angleY/deg, angleZ/deg, scale}:

{0.4942526, -1.022616, 174.5851, <u>0.0419</u>, -14.18602, <u>-0.1464</u>, 1.000450};

angleX and angleZ fixed to values measured by M. Heil.