The New Finite-Range Droplet-Model Mass Table FRDM(2012)

Peter Möller

Theoretical Division, Los Alamos National Laboratory

Collaborators on this and other projects:

W. D. Myers, J. Randrup(LBL), H. Sagawa (Aizu), S. Yoshida (Hosei), T. Ichikawa(YITP), A. J. Sierk(LANL), A. Iwamoto (JAEA),
S. Aberg (Lund), R. Bengtsson (Lund), S. Gupta (IIT, Ropar), and many experimental groups (e. g. K.-L. Kratz (Mainz), H. Schatz (MSU), A. Andreyev (York) ...).

More details about masses, other projects (beta-decay,fission), associated ASCII data files, interactive access to data (type in Z, A and get specific data, contour maps) and figures are at

http://t2.lanl.gov/nis/molleretal/

Proton Number Z

Successive FRDM enhancements

Optimization (2006)

Better search for optimum FRDM parameters. Accuracy improvement: 0.01 MeV

New mass data base (AME2003) (2006)

Better agreement than with AME1989.Accuracy improvement:0.04 MeV

Full 4D energy minimization (2006–2008)Full 4D minimization($\epsilon_2, \epsilon_3, \epsilon_4, \epsilon_6$) step=0.01.Accuracy improvement:0.02 MeV

Axial asymmetry (2002–2006) Also yields correct SHE gs assignments. Accuracy improvement: 0.01 MeV

L variation (2009–2011)

Accuracy improvement: 0.02 MeV

Improved gs correlation energies (2012)

Accuracy improvement: 0.01 MeV

Successive FRDM enhancements

Optimization (2006)

Better search for optimum FRDM parameters. Accuracy improvement: 0.01 MeV

New mass data base (AME2003) (2006)

Better agreement than with AME1989.Accuracy improvement:0.04 MeV

Full 4D energy minimization (2006–2008)Full 4D minimization($\epsilon_2, \epsilon_3, \epsilon_4, \epsilon_6$) step=0.01.Accuracy improvement:0.02 MeV

Axial asymmetry (2002–2006) Also yields correct SHE gs assignments. Accuracy improvement: 0.01 MeV

L variation (2009–2011)

Accuracy improvement: 0.02 MeV

Improved gs correlation energies (2012)

Accuracy improvement: 0.01 MeV

Z	A	AME2003	Trap	FRDM(1992)	Dev1992	FRDM(2012)	Dev2012
		(MeV)	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
38	80	-70.308	-70.313	-68.840	-1.473	-70.385	0.072
38	81	-71.528	-71.528	-70.650	-0.878	-71.688	0.160
38	84	-80.644	-80.648	-80.880	0.232	-81.474	0.826
40	86	-77.800	-77.971	-77.960	-0.011	-78.646	0.675
41	85	-67.150	-66.279	-65.350	-0.929	-66.559	0.280
42	85	-59.100#	-57.510	-55.750	-1.760	-57.441	-0.069
42	86	-64.560	-64.110	-62.720	-1.390	-63.913	-0.197
42	87	-67.690	-66.882	-66.030	-0.852	-67.043	0.161
43	87	-59.120#	-57.690	-56.540	-1.150	-57.786	0.096

Successive FRDM enhancements

Optimization (2006)

Better search for optimum FRDM parameters. Accuracy improvement: 0.01 MeV

New mass data base (AME2003) (2006)

Better agreement than with AME1989.Accuracy improvement:0.04 MeV

Full 4D energy minimization (2006–2008)Full 4D minimization($\epsilon_2, \epsilon_3, \epsilon_4, \epsilon_6$) step=0.01.Accuracy improvement:0.02 MeV

Axial asymmetry (2002–2006) Also yields correct SHE gs assignments. Accuracy improvement: 0.01 MeV

L variation (2009–2011)

Accuracy improvement: 0.02 MeV

Improved gs correlation energies (2012)

Accuracy improvement: 0.01 MeV

Model	A/C	a ₁ (MeV)	a ₂ (MeV)	J (MeV)	Q (MeV)	L	μ_{th}	$\sigma_{th;\mu=0}$ (MeV)
		((((((
(92)	1/1	16.247	22.92	32.73	29.21	0	0.0156	0.6688
(92)	1/3						0.1755	0.4617
(92)	1/2						0.0607	0.6314
(92)-a	1/1	16.245	23.02	32.22	30.73	0	0.0000	0.6614
(92)-a	1/3						0.0174	0.4208
(92)-a	1/2						0.0114	0.6180
(92)-b	1/1	16.286	23.37	32.34	30.51	0	0.0000	0.6591
(92)-b	1/3						0.0031	0.4174
(92)-b	1/2						0.0076	0.6157
(06)-a	2/2	16.274	23.27	32.19	30.64	0	0.0000	0.6140
(07)-b	2/2	16.231	22.96	32.11	30.83	0	0.0000	0.5964
(11)-b	2/2	16.231	22.95	32.10	30.78	0	0.0001	0.5863
(11)-c	1/1	16.251	23.10	32.31	30.49	0	-0.0003	0.6300
(11)-c	1/3						0.0144	0.3874
(11)-d	1/1	16.142	22.39	32.98	27.58	85.95	0.0000	0.6092
(11)-d	1/3						0.0545	0.3929
(11)-d	1/2						0.0228	0.5719
(11)-a	2/2	16.147	22.44	32.51	28.54	70.84	-0.0004	0.5700
(11)-a	2/3						-0.0516	0.5618
(12)	2/2	16.195	22.763	32.30	28.72	53.50	-0.0004	0.5595
(12)	2/3						-0.0367	0.5684

Q_{α} Deviations beyond N = 126

Region	Model	Nuclei	RMS
			(MeV)
<i>Z</i> > 82	SkM*	46	2.6
Z > 82	Sly4	46	2.6
Z > 82	HFB21	145	0.409
Z > 82	FRDM(2012)	145	0.326
Z > 88	SkM*	36	1.7
Z > 88	Sly4	36	2.2
Z > 88	HFB21	101	0.367
<i>Z</i> > 88	FRDM(2012)	101	0.274

CONCLUSIONS

- Five distinct improvements in execution of calculations plus better experimental mass data decreased the FRDM(1992) model error by 16.4 %.
- Less staggering in error between neighbors ⇒ much less staggering in S_{1n}, etc.
- Substantial improvement in specific regions, in particular in regions of shape coexistence and where nuclei are axially asymmetric.
- Calculation is performed for 9318 nuclei compared to 8979 nuclei in FRDM(1992).

Next steps?:

Tabulate results and calculate additional quantities, for example β -decay half-lives and P_n values Ground-state spins Test impact on astrophysics applications

CONCLUSIONS

- Five distinct improvements in execution of calculations plus better experimental mass data decreased the FRDM(1992) model error by 16.4 %.
- Less staggering in error between neighbors ⇒ much less staggering in S_{1n}, etc.
- Substantial improvement in specific regions, in particular in regions of shape coexistence and where nuclei are axially asymmetric.
- Calculation is performed for 9318 nuclei compared to 8979 nuclei in FRDM(1992).

Next steps?:

Tabulate results and calculate additional quantities, for example β -decay half-lives and P_n values Ground-state spins Test impact on astrophysics applications