Bad Honnef, April 2013

Measurements of nuclear masses and isomers near and beyond doubly magic ¹³²Sn

Tommi Eronen

University of Jyväskylä, Department of Physics, Finland Max-Planck-Insitut für Kernphysik, Heidelberg, Germany

Penning trap mass harvest

Results Sb - Te

Summary

- Masses beyond ¹³²Sn measured
- Down to ≈100 ms half-life, 10 keV accuracy
- Isomers resolved & removed
- Our focus was nuclear structure
- Nuclear astrophysicists: *Bon appetit!*
 - Ground state masses are in AME2012
 - J. Hakala, J. Dobaczewski et al., PRL 109, 032501 (2012)
 - Isomers A. Kankainen et al., PRC 87, 024307 (2013)
 - Role of the isomers in the r-process?

Continuum Dynamics in Exotic Nuclei

H. Lenske Institut für Theoretische Physik U. Giessen

Single Particle Continuum Spectral Strength

30

$$\begin{pmatrix} T_{q} + U_{q} - 2\lambda_{q} + e_{\alpha} & \Delta_{q}(\vec{r}) \\ -\Delta_{q}^{\dagger}(\vec{r}) & -(T_{q} + U_{q} - e_{\alpha}) \end{pmatrix} \begin{pmatrix} u_{\alpha q}(\vec{r}) \\ v_{\alpha q}(\vec{r}) \end{pmatrix} = 0$$

S. Orrigo, H.L., PLB 677 (2009) & ISOLDE newsletter Spring 2010, p.5

Mass Dependence of 5/2- Neutron Continuum

2

$$S_{j\ell}(E) = \frac{1}{\pi} \frac{d\delta_{j\ell}}{dE}$$

N. Tsoneva, H.L., Phys. Lett. B695, 174180 (2011).

Measurements of proton induced reaction rates for p-process at ESR

Bo Mei

G. Rastrepina, R. Reifarth, M. Heil, and E062 collaboration

⁹⁶*Ru*(*p*,*γ*) reaction measurement

Data Analysis by Geant4 simulation

Binding Energies of Nuclei in Dense Stellar Matter

- S. Typel¹, G. Röpke², T. Klähn³, D. Blaschke³, H.H. Wolter⁴, M.D. Voskresenskaya¹ ¹GSI Darmstadt, ²Universität Rostock, ³Uniwersytet Wrocławski, ⁴LMU München
- modification of nuclear binding energies in the medium: two main effects
 - screening of Coulomb potential by electron background
 - \Rightarrow increase of binding energies (high-Z nuclei!)
 - \circ blocking of states due to Pauli principle
 - \Rightarrow reduction of binding energies, dissolution of nuclei, change of chemical composition
- theoretical formulation: generalized relativistic density functional
 - \Rightarrow global equation of state of stellar matter for astrophysical applications

Direct mass measurements of ⁵⁸Ni projectile fragments at CSRe

Poster presented by Xinliang Yan

Institute of Modern Physics, Chinese Academy of Sciences; Graduate University of the Chinese Academy of Sciences; Max-Planck Institute for Nuclear Physics; GSI Helmholtzzentrum für Schwerionenforschung GmbH

530. Wilhelm und Else Heraeus-Seminar; 23-26 April 2013 - Physikzentrum Bad Honnef - Germany

The role of nuclear masses in r-process nucleosynthesis

Joel Mendoza-Temís TU-Darmstadt

Nuclear Physics input

- neutron capture and fotodissociation rates (from statistical model) for nuclei ranging from Zn to Bí.
- Mass models:
 DZ31
 DZ10
 WS3
 HFB21 (Talys code)

Astrophysical sites

Neutrino driven wind from CCSNe

Neutron Star Mergers

Wednesday, April 24, 13

Wednesday, April 24, 13

Wednesday, April 24, 13

