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As the massive star
nears itsend, ittakes

o snaionagrscirs A Core-Collapse
Supernova 1s the

Iron does not undergo nuclear fusion, so the core

becomes unable to generate heat. The gas pressure ineVitab1€ death
drops, and overlying material suddenly rushes in .
knell of a massive

star (~10+ My).

The explosion
enriches the
interstellar
medium with
elements from
M%,Zﬁﬁ:“ Oxygen to.Nickel
and potentially
the r-process
mamohend —— clements as well.

the core collapses
to form a neutron star.

Material rebounds off the

neutron star, settingup a
shockwave
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CHIMERA

CHIMERA has 3 “heads™

*  Spectral Neutrino Transport (MGFLD-TRANS, Bruenn)
in Ray-by-Ray Approximation

*  Shock-capturing Hydrodynamics (VHI1, Blondin)
* Nuclear Kinetics (XNet, Hix & Thielemann)
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* Spectral Neutrino Transport (MGFLD-TRANS, Bruenn)
in Ray-by-Ray Approximation

*  Shock-capturing Hydrodynamics (VHI1, Blondin)
* Nuclear Kinetics (XNet, Hix & Thielemann)

Ray-by-Ray Approximation
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*  Shock-capturing Hydrodynamics (VHI1, Blondin)
* Nuclear Kinetics (XNet, Hix & Thielemann)

Plus Realistic Equations of State,
Newtonian Gravity with Spherical
GR Corrections.

Ray-by-Ray Approximation
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CHIMERA has 3 “heads” ,.,
P

* Spectral Neutrino Transport (MGFLD-TRANS, Bruenn)
in Ray-by-Ray Approximation

52

*  Shock-capturing Hydrodynamics (VHI1, Blondin)
* Nuclear Kinetics (XNet, Hix & Thielemann)

Plus Realistic Equations of State,
Newtonian Gravity with Spherical
GR Corrections.

Advantages compared to models of the
1990s include

Spectral neutrino transport

Run for postbounce times > 400 ms.

Run on a 180 degree grid. Ray-by-Ray Approximation
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NEWEST MODELS

Since March 2012, we have been running a family of axisymmetric
(2D) models using 12, 15, 20 & 25 M progenitors from Woosley &
Heger (2007).
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NEWEST MODELS

Since March 2012, we have been running a family of axisymmetric
(2D) models using 12, 15, 20 & 25 M progenitors from Woosley &
Heger (2007).

This 1s not our first set of 2D models, most notably a set with the
same 4 progenitors 1n 2009 reached as late as 1 second after bounce.
However, the ongoing accumulation of corrections and improvements
within CHIMERA has prompted us to revisit these models.
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same 4 progenitors 1n 2009 reached as late as 1 second after bounce.
However, the ongoing accumulation of corrections and improvements
within CHIMERA has prompted us to revisit these models.

Current 2012 models include

1) Improvement in radial resolution to 512 zones.

2) Improved NSE-nonNSE transition, including detailed
at low density with NSE.

3) Lattimer-Swesty EoS with K=220 MeV.
4) Numerical corrections.
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NEWEST MODELS

Since March 2012, we have been running a family of axisymmetric
(2D) models using 12, 15, 20 & 25 M progenitors from Woosley &
Heger (2007).

This 1s not our first set of 2D models, most notably a set with the
same 4 progenitors 1n 2009 reached as late as 1 second after bounce.
However, the ongoing accumulation of corrections and improvements
within CHIMERA has prompted us to revisit these models.

Current 2012 models include

1) Improvement in radial resolution to 512 zones.

2) Improved NSE-nonNSE transition, including detailed
at low density with NSE.

3) Lattimer-Swesty EoS with K=220 MeV.
4) Numerical corrections.

At present, the 4 models are still running, though the mean shock
radius of each has passed 6000 km.
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THE EARLY PHASE

For the first ~100 ms after bounce, the supernova shock 1s essentially
spherical, with 1D models 1identical to 2D models.

Once the Standing Accretion Shock Instability (SASI) and neutrino-
driven convection begin, the shock deforms and gradually progresses
outward in radius.

We find that the v-driven
convection precedes the
development of the SASI
at low mass (12 M) and
trails the SASI at high
mass (25 My).

One notable feature 1s

the considerable delay in

launching an explosion,

150-200 ms slower compared to older models.
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THE EARLY PHASE

For the first ~100 ms after bounce, the supernova shock 1s essentially
spherical, with 1D models 1identical to 2D models.

Once the Standing Accretion Shock Instability (SASI) and neutrino-
driven convection begin, the shock deforms and gradually progresses
outward in radius. 500 [
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SHOCK STAGNATION

The early behavior of the stalled shock, prior to multi-dimensional
effects, 1s a balance between the ram pressure of the accreting matter
and the post-shock pressure created as the shock-heated matter emits
neutrinos and gradually settles onto the proto-neutron star.
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SHOCK STAGNATION

The early behavior of the stalled shock, prior to multi-dimensional
effects, 1s a balance between the ram pressure of the accreting matter
and the post-shock pressure created as the shock-heated matter emits
neutrinos and gradually settles onto the proto-neutron star.

An analytic relation for the
radius of the stalled shock

can be derived (see Janka
(2012; ARNPS 62 407).
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The early behavior of the stalled shock, prior to multi-dimensional
effects, 1s a balance between the ram pressure of the accreting matter
and the post-shock pressure created as the shock-heated matter emits
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SUPERNOVA: THE MOVIE

Bruenn, Mezzacappa, Hix, ... (2013)



SUPERNOVA: THE MOVIE

800 ms
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HOW TO MAKE AN EXPLOSION

10

SASI gradually pushes _
the shock outward, 1
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the heating region until
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HOW TO MAKE AN EXPLOSION

SASI gradually pushes ’

the shock outward, L
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the heating region until £ o

heating timescale . — M
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Explosion Energy

pdV work on ejected mass

Energy advection into ejected mass
Nuclear recombination of ejected mass
Neutrino energy deposition in ejected mass

Much of the explosion
energy comes from the
neutrino heating region,
below the ejecta, 1n the
form of PdV work and
advected internal

eneray. e e
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WORKING NEUTRINOS

The 1nitially spherical gain surface between the cooling and heating
regions begins to distort ~70 ms after bounce.

Beginning ~120 ms, the heating region 1s marked by low entropy
downflows, with the strongest heating at their base.
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SHOCK SHAPE

The shape of the shock 1s
determined by the interplay
between convection and the
SASI, with large individual
plumes producing strongly
prolate to mildly oblate
shocks, depending on the
plume’s orientation.

Overall, trend 1s toward prolate
explosions along the axis of
symmetry, likely a result of the
imposed axisymmetry.
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EXPLOSION ENERGIES

Once we achieve the most basic observable, an explosion, we can
begin to compare to the myriad of other potential observations.
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Foremost 1s the kinetic energy

EXPLOSION ENERGIES

Once we achieve the most basic observable, an explosion, we can
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EXPLOSION ENERGIES

Once we achieve the most basic observable, an explosion, we can
begin to compare to the myriad of other potential observations.

of the explosion.

Unfortunately, models are still in

the stage where internal energy

dominates, so we must estimate the

explosion energy by assuming
efficient conversion of E; = E..
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EXPLOSION ENERGIES

Once we achieve the most basic observable, an explosion, we can
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over zones where E* > 0.
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cnergy, E' = E; + E, + E;, summed
over zones where E* > 0.

To this we add contributions from
and removing the envelope.
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COUNTERPOINT

Self-consistent models using
the MPA VERTEX code also
produce successful neutrino-
driven explosions.
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driven explosions. B ]
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However, explosions are even 0.5f ]

more delayed with significantly |

smaller explosion energies. 0002 0-3ﬁ;n§‘;ﬁe?-§0;n‘£g[;]ﬂf7 05 09 1

Some of the differences can be
attributed to different progenitors.
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NICKEL MASS

Another important observable, related to the explosion energy and
very relevant to the nucleosynthesis is the mass of “°Ni.

Only in the 12 M, case is the *°Ni mass saturated.
Mass of other iron-peak species is comparable to “°Ni.

Results are reasonable, though fallback over longer timescales 1s
uncertain. Recent studies are finding differing results on fallback.
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NICKEL MASS
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very relevant to the nucleosynthesis is the mass of “°Ni.
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Only in the 12 M, case is the *°Ni mass saturated.
Mass of other iron-peak species is comparable to “°Ni.

Results are reasonable, though fallback over longer timescales 1s
uncertain. Recent studies are finding diftering results on fallback.
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OUR FIRST 3D SIMULATIONS

.. Bruenn, Mezzacappa, Hix, ... (2009; J Phys Conf

180 012018)
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OUR FIRST 3D SIMULATIONS

CHIMERA3D Maiden VOyage (2009) l:%ruenn Mezzacappa, Hix, ... (2009; J Phys Conf

180 012018)

304 adaptive radial zones, 2.4°
in latitude and longitude, on
11552 processors consumed
12M cpu-hours to cover 150 ms.

W. R. Hix (ORNL/UTK) WE-Heraeus-Seminar: Nuclear Masses and Nucleosynthesis, Bad Honnef, April 2013



OUR FIRST 3D SIMULATIONS

CHIMERABD Maiden VOyage (2009) I?ruenn, Mezzacappa, Hix, ... (2009; J Phys Conf

180 012018)

304 adaptive radial zones, 2.4° &
in latitude and longitude, on .
11552 processors consumed

12M cpu-hours to cover 150 ms.

CHIMERA3D was tested to

512 adaptive radial zones, 0.7° in
latitude and longitude on 131072
pProcessors.

CHIMERA 3D Scaling

6000
B Checkpoint
timestep
B z-sweep (incl. transpose)
B y-sweep (incl. transpose)
4000 B x-sweep (remainder)
x-transport

B EoS+Nuclear

(S
o
o
o

3000

2000

time (seconds per 400 cycles)

[y
o
o
o

0

2 8 . 32 128
kilocores

W. R. Hix (ORNL/ ) WE-Heraeus-Seminar: Nuclear Masses and Nucleosynthesis, Bad Honnef, April 2013



OUR FIRST 3D SIMULATIONS

CHIMERA3D Maiden voyage (2009) FECalE (2009; ) Pys Conf
304 adaptive radial zones, 2.4°
in latitude and longitude, on
11552 processors consumed
12M cpu-hours to cover 150 ms.

CHIMERA3D was tested to

512 adaptive radial zones, 0.7° in
latitude and longitude on 131072
pProcessors.
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2009 CHIMERA 3D model
shows similar behavior to

2D at 150 ms after bounce.
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COMPARING 2D & 3D
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Recent self-consistent
VERTEX 3D simulations also
exhibit similarity between 2D
and 3D for the first 200 ms.

W. R. Hix (ORNL/UTK)

2009 CHIMERA 3D model

shows similar behavior to
2D at 150 ms after bounce.

But i1t was just getting to the
interesting point when it was
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COMPARING 2D & 3D
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Recent self-consistent
VERTEX 3D simulations also

exhibit similarity between 2D
and 3D for the first 200 ms.

After this point 3D seems
pessimistic compared to 2D.

W. R. Hix (ORNL/UTK)

2009 CHIMERA 3D model

shows similar behavior to

2D at 150 ms after bounce.

But i1t was just getting to the
interesting point when it was
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YIN-YANG

To defeat the Courant condition at the

=% NS

=

; Shoe AR
pole and allow timesteps similar to the DI LI K

2D models, we have adopted 2 section
overset grid, the Yin-Yang grid of
Kageyama & Sato (2004).
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YIN-YANG

To defeat the Courant condition at the
pole and allow timesteps similar to the
2D models, we have adopted 2 section

overset grid, the Yin-Yang grid of
Kageyama & Sato (2004).

A test run with 480 radial
zones & n
latitude and longitude 1s
underway. Larger model
with 1.3° resolution 1n
latitude and longitude should
start shortly.
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SUPERNOVA NUCLEOSYNTHESIS
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PARAMETERIZED SUPERNOVAE

Since the mid-1990s, we have
had this appreciation that the
supernova mechanism 1s
intrinsically multi-
dimensional and driven by
neutrino-matter interactions.
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PARAMETERIZED SUPERNOVAE

Since the mid-1990s, we have
had this appreciation that the
supernova mechanism 1s
intrinsically multi-
dimensional and driven by
neutrino-matter interactions.

However, much of our
understanding of the impact
of the central CCSN engine
neglects these facts.
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PARAMETERIZED SUPERNOVAE
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TUNING THE EXPLOSION
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In current nucleosynthesis models, 2 parameters, the Bomb/Piston
energy and the mass cut, are constrained by observations of
explosion energy and mass of “°Ni ejected.
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In current nucleosynthesis models, 2 parameters, the Bomb/Piston
energy and the mass cut, are constrained by observations of
explosion energy and mass of “°Ni ejected.

On the positive side, such models include 100s-1000s of species.
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NUCLEOSYNTHESIS UPDATE

In time, as the accretion onto the PNS = 0 and the explosion

energy reaches its full value, we will be able to examine the
nucleosynthesis of these models.

Models are however limited by the a-network included within
CHIMERA (and similar codes).
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energy reaches its full value, we will be able to examine the
nucleosynthesis of these models.

Models are however limited by the a-network included within
CHIMERA (and similar codes).

100
et
B 0.316

§.0
- B12-WHO07
— 00816

Mia: 0.856 0010 e 08 S pOSt-bOUIlC@
Win: 0.00

)|
ZQ
o
radius (xI10"2 Jm
-
s

-10 -3 o 5 10
radius (x10"23 km)

W. R. Hix (ORNL/UTK) WE-Heraeus-Seminar: Nuclear Masses and Nucleosynthesis, Bad Honnef, April 2013



NUCLEOSYNTHESIS UPDATE

In time, as the accretion onto the PNS = 0 and the explosion

energy reaches its full value, we will be able to examine the
nucleosynthesis of these models.
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In time, as the accretion onto the PNS = 0 and the explosion

energy reaches its full value, we will be able to examine the
nucleosynthesis of these models.

Models are however limited by the a-network included within
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CHIMERA SHOCK BURNING

By 800 ms after

bounce, shock
burning in the
12 M model 1s
nearly complete
with a shock

temperature of
~2 GK.

However,
placement of
the mass cut
continues to
evolve, with the

fate of ~0.01
M 5 uncertain.
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NEUTRINOS & NUCLEOSYNTHESIS

Despite the perceived importance of neutrinos to the core collapse
mechanism, models of the nucleosynthesis have largely 1gnored this
important effect.
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NEUTRINOS & NUCLEOSYNTHESIS

Despite the perceived importance of neutrinos to the core collapse
mechanism, models of the nucleosynthesis have largely 1gnored this
important effect.

Nucleosynthesis from v-powered
supernova models shows several
notable improvements.
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PUTTING THE V IN VP

The vp-process occurs
because the supernova ejects
proton-rich (¥, > 0.5) gas at
high temperature (~10 GK),
composed of free neutrons
and protons.

W. R. Hix (ORNL/UTK)
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The needed neutrons are generated from protons converted via anti-
neutrino capture.
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MULTI-D VP-PROCESS?

The open question 1s will the results of self-consistent multi-
dimensional simulations match those of the parameterized neutrino-
driven models that discovered the vp-process?
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MULTI-D VP-PROCESS?

The open question 1s will the results of self-consistent multi-
dimensional simulations match those of the parameterized neutrino-
driven models that discovered the vp-process?

Our final answer must Electron

2 L e Fraction
await the completion of
our models, but we can
get an early indication
by examining the 1000
neutronization.

Radius (km)

There 1s a clear trend 1n

the Y, distribution, with 1000
more massive models
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rich material.
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TRACING THE MAsSs CUT
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TRACING THE MAsSs CUT

Post-processing of tracer particles will allow nucleosynthesis
predictions that capture the multi-D effects beyond the a-network.
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TRACING THE MAsSs CUT

Post-processing of tracer particles will allow nucleosynthesis
predictions that capture the multi-D effects beyond the a-network.

However the coupling (energy generation, neutronization, mixing,
etc.) between the nucleosynthesis and the multi-D etfects 1s lost and
unrecoverable.
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They reveal the complexity of defining the mass cut.
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TRACING THE MAsSs CUT

Post-processing of tracer particles will allow nucleosynthesis
predictions that capture the multi-D effects beyond the a-network.

However the coupling (energy generation, neutronization, mixing,

etc.) between the nucleosynthesis and the multi-D etfects 1s lost and
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VP-PROCESS
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Our preliminary results show proton-rich ejecta and vp-process
(dotted lines), but more weakly than previous results.
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DETAILED COMPOSITION
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As a first step toward large networks, we’ve replaced the a-network
in CHIMERA with 150 species (in 1D only so far).

The network cost grows from 3-5% of the simulation to 200%-400%,
making the total simulation 3-5X as expensive.
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PROGRESS REPORT

Ongoing improved CHIMERA models confirm successtul,
mostly prolate, explosions across a range of progenitors
from 12-25 M driven by neutrino heating and SASI.

These self-consistent CHIMERA simulations, together with
similar VERTEX simulations from Janka and collaborators,
point to a successful neutrino-reheating mechanism, with the
explosion delayed by 300 ms or more after bounce, at least in
axisymmetry (2D).

Self-consistent 3D simulations, while very expensive, are
possible. They are critical to teach us the value of our 2D
stmulations. Early indications are that 3D 1s somewhat more
pessimistic than 2D, but this view may be colored by
relatively low resolution 1n 3D.
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FUTURE NUCLEOSYNTHESIS
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FUTURE NUCLEOSYNTHESIS

We expect large differences in
nucleosynthesis from parameterized
1D and older 2D models because of
neutrinos, increased delay time and
convoluted mass cut.

Fe, Si, O

,,,,,,

Kifonidis, Plewa,
~ Janka & Miiller (2006)

Hammer, Janka &
Miller (2010)
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FUTURE

Fe, Si, O

Kifonidis, Plewa,
~ Janka & Miiller (2006)

W. R. Hix (ORNL/UTK)

NUCLEOSYNTHESIS

We expect large differences in
nucleosynthesis from parameterized
1D and older 2D models because of
neutrinos, increased delay time and
convoluted mass cut.
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FUTURE

Fe, Si, O

Kifonidis, Plewa,

~ Janka & Miiller (2006)

W. R. Hix (ORNL/UTK)

NUCLEOSYNTHESIS

We expect large differences in
nucleosynthesis from parameterized
1D and older 2D models because of
neutrinos, increased delay time and
convoluted mass cut.

Must simulate with large networks,
neutrino transport and multi-D hydro.
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