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Outline

Brief motivation for CARIBU
— Nuclear structure
— Nuclear astrophysics
— Applications

CARIBU description

Early results ... masses and other

Ongoing upgrades
— Gains
— Available/new experimental equipment
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Nuclear structure of neutron-rich nuclei

= Heavy neutron-rich nuclei region:
— region mostly unexplored even for the most basic properties
— weakly bound with diffuse surface ... reduced spin-orbit coupling, shell model

possibly modified
— signature can take many forms: single particle structure, p._ =~ . 12
ground state properties, etc ... g o N>
e
Ny 70
— £
5/2 _\_ d5/2

B Mass known

[0 Half-life known
[ ] nothing known

~ around the ’7 ~ very diffuse

valley of surface ~ harmonic
neutron drip line oscillator

B-stability

protons

neutrons
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The r-process path

r-process:

- Process known to
exist

- Exact site unknown

- Path critically depends
on nuclear properties
of neutron-rich nuclei:

- mass
- lifetime

— B-delayed neutrons
- fissionability

Efficient techniques exist to obtain this information but the required
beams are missing in most of this region of the chart of nuclides.
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Requirements of n-rich physics: Nucleon transfer
reaction ... single particle states (and reaction rates)

B Single particle/hole states around magic
nuclei
H (d,p) reactions =

' L |—1L=5
— best done well above Coulomb barrier e wW -

in both entrance and exit channels ... ‘ 000
i.e. about 7.5 MeV/u around 132Sn
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— requires 104 per second to get
information on angular distribution

B (°He, a), (a,t) reactions

— Well matched to higher angular
momentum transfer

(d,p) (o,*He)

3250 intensﬁty Vs energy

1.0E+06

— Energy requirements again set by
Coulomb barrier T omos |\
L
— Required beams are not available z \
e e Sonec CARIBU
anywhere at present £ 1.0E+04 yield
A 4 A 4
(d,p) reactions can also be important to \ 7.5 MeV/u 11 MeV/u
. 1.0E+03 ‘
determine (n,y) rates close to r-process path: 4 8 12

energy (MeV/u)

e.g. (d,p) on 34Ge or 38Te
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CARIBU Decay Workshop

Workshop on "Decay Spectroscopy at CARIBU: Advanced
Fuel Cycle Applications, Nuclear Structure and Astrophysics”

April 14-16, 2011 at

Argonne@

NATIONAL LABORATORY

A workshop on “Decay Spectroscopy at CARIBU:
Advanced Fuel Cycle Applications, Nuclear Structure
and Astrophysics” will be held at Argonne National
Laboratory on April 14-16, 2011.

The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope
Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC)
applications, nuclear structure and astrophysics research. The workshop will consist of review and
contributed talks. Presentations by members of the local groups, outlining the status of relevant in-
house projects and available equipment, will also be organized. Time will also be set aside to discuss
and develop working collaborations for future decay studies at CARIBU.

Topics of interest include:
« Decay data of relevance to AFC applications with emphasis on reactor decay heat
= Discrete high-resolution gamma-ray spectroscopy following radioactive decay and related topics
= Calorimetric studies of neutron-rich fission fragments using Total Absorption Gamma-ray
Spectrometry (TAGS) technique
» Beta-delayed neutron emissions and related topics
« Decay data needs for nuclear astrophysics

Waorkshop Organizers

Dr. Michael Carpenter, Argonne National Laboratory

Prof. Partha Chowdhury, University of Massachuselts Lowell
Dr. Jason Clark, Argonne National Laboratory

Dr. Filip Kondev, Argonne National Laboratory

Dr. Kim Lister, Argonne National Laboratory

Dr. Dariusz Seweryniak, Argonne National Laboratory ‘

" Please visil the Workshop web sile for additional information about
= registration, pragram, lodging and transportation to Argonne.

14-16t April 2011

79 Participants from 13 countries
and 28 institutions

Aimed at engaging the community in
CARIBU decay (and accelerated
beam) physics.

Decay Heat
Astrophysics
Nuclear Structure

Hf?n.-i!www ne anl nav/ranahilitie/nd /AFC-Anr11/ S50
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CARIBU - Californium Rare lon Breeder Upgrade

Access to n-rich region obtained at ATLAS via fission of the most
neutron-rich “available” very heavy nuclei (e.g. 2°2Cf)

Project goal: Provide neutron-rich radioactive beams to user community

Project Description

Low-energy Gammasphere

e Masses, decay spectroscopy, laser spectroscopy, ...
Reaccelerated through ATLAS at up to 15 MeV/u HELIOS spectrometer

e Single particle structure, gamma-ray spectroscopy, ...

Fragment
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Neutron-rich beam source: CARIBU “front end”
layout

Main components of CARIBU

PRODUCTION: “ion source” is
252Cf source inside gas catcher
e Thermalizes fission fragments
e Extracts all species quickly
e Forms low emittance beam

SELECTION: Isobar separator
e Purifies beam

DELIVERY: beamlines and
preparation
e Switchyard

e Low-energy buncher and
beamlines

e Charge breeder to Increase
charge state for post-
acceleration

e Post-accelerator ATLAS and
weak-beam diagnostics

Guy Savard, Argonne National Laboratory
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CARIBU gas catcher: transforms fission recoils
Into a beam with good optical propertles

= Based on smaller devices developed at ANL
— Radioactive recoils stop in sub-ppb level impurity Helium gas

— Radioactive ion transport by RF field + DC field + gas flow

— Stainless steel and ceramics construction (1.2 m length, 50 c
inner diameter)

— Fast and essentially universally applicable
— Extraction in 2 RFQ sections with JURFQs for differential £

25203f DC gradient

¥ - !m
_
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Californium source and transport cask

>

YV V V V

A\

Cf source is made at the HIFR high-flux reactor in Oak Ridge (~50 rem/hr unshielded)
» Progression of 3 sources ... 2 mCi, 80 mCi, “1 Ci”

Transported in a steel/cement cask to Argonne
Installed in the CARIBU transport cask using manipulators in hot cells at Argonne
Move in the cask on site at Argonne

For installation in the gas catcher, the source and shielding plug are pushed from the
storage location into position at the end of the gas catcher.

The assembly is sealed to the gas catcher, the source being inside the gas catcher.

& W

Guy Savard, Argonne National Laboratory Masses and Nucleosynthesis, April 25, 2013
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Extracted isotope yield at low energy (50 keV)

1 Ci %2Cf source

eabout 20% of total >
activity extracted as ions

eworks for all species

ecomplementary

uranium fission _
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Fragment selection: Isobar separator, . . L —

Compact design (fits on HV platform):

e two 60° bends

* 50 cm radius

e first-order mass resolving power: 20,000

Far from stability, mass separation is larger ...

mass (u)

131.96

131.95 A

131.94 -

131.93

131.92 |

131.91 1

131.9

Masses of A=132 isotopes

CARIBU Beams

1323n

n

/

NS

10 20 30
N-Z

40
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Selection by compact CARIBU isobar separator

) TXE
O L <
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Beam Delivery

After isobar separation, two
options for beam use

Low energy experiments after
beam bunching —zmm =

— Mass measurement ‘

i = fr
— Laser Spectroscopy = [ |-® e i
— Beta decay studies

Reaccelerated Beams @Z
—

Source / Gas Catcher
Isobar Separator

=El
5

|
I -1-
NI/

— Use ECR-1 as charge breeder i

— Inject ions into ATLAS in high “
charge state (q/m > 0.15) and - | ‘ o
energy (~100-200 keV) I

Guy Savard, Argonne National Laboratory Masses and Nucleosynthesis, April 25, 2013



CARIBU beams reaccelerated to Gammasphere (...
and HELIOS)

ATLAS

& Target
%y, Area IV

GP/Gammasphere
Beamline

CARIBU ::15 p * 7N split-pale
. I 1 & 7 AN " Spectrometer
ECRII

7
lon Source omic

_ Physics

Target Area lll

Ecn I . | RS o & :“. .‘." & & "-' .
Yodlen P , \, ¥ Large Scattering
Source - X Facility
Canadian
Penning Trap
‘ b__‘__“rf Spectrograph/GC-RFQ
S S = — 8C Solenoid/GC-RFQ
Accelerator !
nirol Room 4
Control Roo i Target Area Il 0 50
i [ e
Approximate Scale
{in feet)
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Decay of 14°Cs in Gammasphere: Expanded B-decay
level scheme of 14°Ba

o 00 1.684
]gzﬁcss:f
HB-=10
g-=7130gll
Ep- Ip~ Log £t
0.8 5.07 5280.4
0.4 G.03 4360.3
1.0 6.07 fas73.08
1.3 6.09 3283.20
0.5 G52 3261.7
0.6 6.49 3144 .38
017 7.2 288257
0.5 681 2560.78
1.5 642 f2341.77
0.52  6.96 2127.9
046 7.14 1781.50
0.5 g.olu 1693.0
2.0 6.55 £ 1639.60 <16 ps
4.3 G.25 i/ 1535.53 9 ps
1.0 g.58lu —— 1424.06 <8 ps
5073 19.8  5.66 132648 10 ps
1292.20
Y 834.81 11.9 ps
7.2 g.461u ——— 350,505 85 ps
7335 56 5.59 0.0

142B
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The power of Gammasphere: Spin-Parity
Assignments via Angular Correlations
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First Coulomb excitation measurement with a
CARIBU beam

ol B -601MeV 8 i * First Coulex with 141Cs — two goals:
o [ A O P N 1. Demonstrate feasibility & study
2 o a t AR
E . oo § backgrounds from stable beam
B — . . q
Sl . 2 contamination and 3 decay with 850

‘ | MeV beam on Pb; i.e., “unsafe”

e s I st B s Coulomb excitation; 4300 part/sec for

. . 14.5 hours run.
L E,_ =850Mev 30 g §
ar ] I 3 & )
; ' | : | £ 2. Measure B(E2) of the 11/2* state in 141Cs,
o l6r o L . 1] o] L e o | - . Y7i ”
g 1 wf! o i oo via “safe Coulex” at 601 MeV for ~62
il Bf"’r o hours with ~3360 part/sec.
o [H
£ of 2 |
Fe o= 2 3
|| g 5 8 .  B(E2)=20(5) W.u., smaller than the 2*
o I o \ ol . —
a«-"“;;wm;'f W"‘WWWW‘;“W level in 142Ba (32(1) W.u.), but similar to
E, (keV) the value for the 2+ state in 149Xe
Figure: Gamma-ray spectra from 601- & (25.6(8) W.u).
850- MeV #1Cs with the Coulomb excitation

li 369.2 keV. ‘
Ine at e S. Zhu et al., to be published
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Beam Delivery

After isobar separation, two
options for beam use

Low energy experiments after
beam bunching —zmm =

— Mass measurement ‘

i = fr
— Laser Spectroscopy = [ |-® e i
— Beta decay studies

Reaccelerated Beams @Z
—

Source / Gas Catcher
Isobar Separator

=El
5

|
I -1-
NI/

— Use ECR-1 as charge breeder i

— Inject ions into ATLAS in high “
charge state (q/m > 0.15) and - | ‘ o
energy (~100-200 keV) I

Guy Savard, Argonne National Laboratory Masses and Nucleosynthesis, April 25, 2013



| ow-energy buncher

e provides a pulse structure on low-energy beam and increases peak
intensity by about 5 orders of magnitude

eAllows energy to be tuned from a few 100s of eV to 50 keV

Gas-filled RFQ

a“Elevator”

EE NN NN RN I e S s |

------------------

= = ; = &

{ i = ih L, E

4 : wes e
[ L

!l : | - .'_.:. .
\ / Elevator
. ' drops 50 kV
50 kV isolation

« in 20 ns
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* Delivers 1.5 kV to 10 kV beam to
experimental stations

e Pulsed beams with rates from
~ 50 ms to seconds

e Low emittance

* Experimental stations:

CPT TAPE STATION X-ARRAY BPT
(installed) (installed)

[, Lo

Y
. |
- A
. 1
N

LASER SPECTROSCOPY: After CPT move (2013/2014)

e Limited amount of space ... removal of Tandem will provide new experimental area
A Guy Savard, Argonne National Laboratory Masses and Nucleosynthesis, April 25, 2013 21



The CPT apparatus at CARIBU
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Ho

— CPT Measurement campaigns
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™ CPT Measurement campaigns
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Time of flight (ps)
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Yield is still not the limitation ... sample purity is

133Cs 1s excitation, 100% pure 146Cs 0.2 s excitation, 64% pure
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ME(AMEO3) - ME(CPT) (keV)

Atomic Mass Evaluation comparison

600

400

200

-200

-400

-600

-800

- CPT
-~ AMEO3-CPT
In Sn Sb Te | Xe Cs PrNd Pm Sm Eu
{_ G
T v oo s 5.3 I }/ T N S i1 i3 1 % I 1 l 4

bl b
N

Higher N

>

Trend: more neutron-rich nuclei are found to be less bound than
expected away from stability

Guy Savard, Argonne National Laboratory
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Why the difference with the atomic mass
evaluation?

0.57

¢ [n and 3 endpoint

{ m Penning Trap

> Deviations from 2003

atomic mass

> 0;4—: + Transfer and (n. v) . .: exialuation increase
% 0 3—: < Extrapolation y with neutron numb.er
T ] Good agreement with
= ] other Penning trap
% 0.2 L, e results
=] * Good agreement with
= 0.17 ° o® masses obtained
Q"\ v ® . . * . . through reaction Q
> 01— e e values
23 ] ° ° Large disagreement
= -0.1- X with results obtained
with beta-decay
-0.2+—— —— —— —— —— measurements
0.600 0.605 0.610 0.615 0.620
N/A

Adapted from J. Van Schelt et al, PRC85, 045805 (2012)
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Sb

Sn

What is effect on r process? Simulate.

To see effect of new masses, ask a simple and answerable question:

What are the effective [3-decay half-lives of the elements, and how do our new masses
change them?

Sn will have biggest impact, but check at Sb and Te as well

Simple numerical simulation:

= Select a temperature and density

= Seed on the side of stability, N=81

= Allow (n,y), (Y,n), and B decay to occur

= See how long it takes for half of element to 3-decay (or extrapolate if in equilibrium)
= Repeat over a range of temperatures and densities

= Repeat with real data and mass model to see impact of new masses

N N N N N
— = - = -

131 132 133 134 135 136

Guy Savard, Argonne National Laboratory Masses and Nucleosynthesis, April 25, 2013 29



Log(n (cm™))

Effect of FRDM95 on Sn

Effective Half-Life of Sn with FRDM S,, Effective Half-Life of Snh with CPT+FRDM S,

30-
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22-

20-
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Temperature (GK)
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Ratio of Sn Half-Lives: CPT vs. FRDM95 S,
| | |
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og(n (cm™))

Same effect vs FRDM95 In Sb and Te

= Same trend in Sb and Te, plus a strong non-equilibrium effect in Te:

Ratio of Sb Half-Lives: CPT vs. FRDM95 S Ratio of Te half-lives: CPT vs. FRDM95 S,
—_—t B e A — 10
307
287
267
1
24
22
20
0.1
1 1.5 2 1 1.5 2
Temperature (GK) Temperature (GK)
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Non-equilibrium effects in Te

Al.z GK, 102 n/cm3 /\
noA
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The trouble with mass models

Comparison of mass model masses for tin

6
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The trouble with mass models

Comparison of mass models on neutron-rich tin
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= Need to go out and measure these masses where we can ... can’t expect mass
models to be better away from stability than they are at stability
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™ CPT Measurement campaigns
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Main tools enabling the physics: ATLAS suite of
experimental equipment

GRETINA

CPT mass
spectrometer

) y (Ludwig) and
ge spectrometer

PPPPP

+ outside instruments: CHICO-Il, HERCULES, In-flight RIBs production

ORRUBA, VANDLE, ... Beta decay Paul trap
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Future experiments at CARIBU - beta-delayed neutron measurements

* Let ion decay from rest at center of ion
trap (Paul trap)

MCP ion

etector
s 136y g2+

e Surround ion trap (Paul trap) with
plastic scintillators (to detect p’s) and
MCPs (to detect decay recoils)

135

Jojejpu
anseld

* Beta-delayed neutron decay produces
recoil detected by TOF with MCP
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Future experiments at CARIBU - beta-delayed neutron measurements

e Data obtained
using 1 mCi 222Cf L :
ol | BPT results
source: I I
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* Building new trap for dedicated
program of beta-delayed neutron
measurements at CARIBU (more
detectors, stronger source)

Oy =12%
cQ =26%
-« Q. =28%

e sensitive to 1 ions/s production
rate (to obtain a 10% precision
in branching ratio)

* E, resolution: 5%
 E, threshold: 50 keV
* B threshold: 25 keV
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Further development of CARIBU

Fall 2012:
* RFQ to replace PII \/

Summer 2013: Expect X2 gain /’

* New cryomodule

Fall 2013:

* New stronger, thinner

source: Expect X5-10 gain
2014 - 2015:

* EBIS to replace ECR: Expect X2 gain

*New low-energy experimental area
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Status

= CARIBU facility is operational

— First RIB facility based on a gas catcher ... it works. Over 500 neutron-rich
isotopes available at low energy

— Over 70 different neutron-rich radioactive isotope species have been used
for experiments in the last year

— Low-energy program in full swing with experiments approved by last two
PACs

— Reaccelerated beam program initiated with decay experiments and first
Coulomb excitation at Gammasphere, reaccelerated beam experiments
approved in Dec 2012 PAC running now

=Current source ( ~ 150 mCi) will be replaced by a 1 Ci source in the fall. Combined
with completion of ATLAS intensity upgrade, will yield gains of ~6-12 in intensity for
low-energy and reaccelerated beams.

Next ATLAS/CARIBU PAC will be held in summer 2013 (call for proposals expected
soon). Will accept proposals for all ATLAS/CARIBU beams and the first GRETINA
campaign.
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