The Duflo-Zuker mass model(s) and the three body issue

Andrés P. Zuker

Bad Honnef April 2013

Preliminaries (2011 version, updated)

"One mass formula stands above all others..."
"However, this does not mean that with Duflo-Zuker we have reached the end of history.." Quoted from
D. Lunney, J. M. Pearson and C. Thibault RMP 75 (2003) 1021; who refer to
J. Duflo and A.P. Zuker, Phys. Rev. C 52 (1995) R23; [DZ28 RMSD $\approx 350 \mathrm{keV}$ now 380 KeV]

Recently DZ has shown limitations and met WS competition (Phys. Rev. C 84, 051303(R) (2011) Ning Wang and Min Liu).
However, once DZ rights and wrongs understood by studying DZ10 \exists room to do better
(J. Duflo, 1996 unpublished, http://amdc.in2p3.fr/web/dz.html; RMSD ≈ 550 keV now 580 keV)
J. Mendoza-Temis, J. G. Hirsch and A. P. Zuker Nuc. Phys. A 843 (2010) 14-36.

DZ10 is an invaluable summary of the DZ approach. It does not point to the end of history, but to a (Three Body) follow up of the story.

Grand Strategy 0

Guess form of Schrödinger many body solutions.
Which needs
Clear idea of what the data say
Clear idea of what the NN Hamiltonian says
Clear idea(s) about the many body Shell Model
Some sort of idea of what the FULL Hamiltonian should look like

What has to be explained. BE: Shell effects + LD

$$
\mathrm{LD}=15.5 A-17.8 A^{2 / 3}-28.6 \frac{4 T(T+1)}{A}+40.2 \frac{4 T(T+1)}{A^{4 / 3}}-\frac{.7 Z(Z-1)}{A^{1 / 3} \text { by }}
$$

Alpha lines

Refine view of shell effects.
First at constant $t=N-Z$. Much stucture.

Beta lines

Now at constant A. No structure.

powered by $\operatorname{LAT} \mathrm{E}_{\mathrm{X}}$

Grand Strategy I

DZ10 contains 10 terms:
6 "macro", 3 "correlation", 1 "deformation"
"Macro" is LD, except for "Leading" term which goes $\asymp A$ and produces shell effects.
"Leading" is "Master" (from NN) plus corrections to have the right shell effects.

Two calculations are done: Macro+correlation and Macro+deformation. Lowest is kept.
Concentrate on Master

Grand Strategy II

Separate monopole H_{m} from multipole H_{M}.

$$
\begin{gather*}
H=H_{m}+H_{M} \tag{1}\\
H_{m}=\text { all quadratic forms in } a_{r}^{+} \cdot a_{s} \tag{2}\\
H_{m d}=\sum_{r s} m_{r}\left(m_{s}-\delta_{r s}\right) V_{r s}+T_{r} \cdot T_{s} \text { terms } \tag{3}
\end{gather*}
$$

H_{m} contains LD+shell effects (and Hartree Fock and more). It defines model spaces.
H_{M} is responsible for SM configuration mixing.
From α and β lines we decide that T terms play little role in shell effects. So we study the m terms.

The Master Term

Diagonalize $\Longrightarrow \mathbf{H}_{\mathbf{m d}}=\sum_{\alpha} \mathbf{E}_{\alpha} \sum_{\mathrm{ks}} \mathbf{U}_{\alpha \mathbf{k}} \mathbf{m}_{\mathbf{k}} \mathbf{U}_{\alpha \mathrm{s}} \mathbf{m}_{\mathbf{s}}$

One term overwhelms all others, Calling m_{p} the number of particles in the major HO shell of principal quantum number p of degeneracy $D_{p}=(p+1)(p+2)$, we find $\mathbf{U}_{0 \mathrm{k}} \mathbf{m}_{\mathrm{k}} \approx \mathrm{U}_{0 \mathrm{p}} \mathrm{m}_{\mathrm{p}}=\mathrm{m}_{\mathrm{p}} / \sqrt{\mathrm{D}_{\mathrm{p}}}$

$$
\begin{align*}
& \mathbf{M}_{A} \propto \frac{\hbar \omega}{\hbar \omega_{0}}\left(\sum_{p} \frac{m_{p}}{\sqrt{D_{p}}}\right)^{2} \propto \frac{A^{1 / 3}}{\left\langle r^{2}\right\rangle}\left(\sum_{p} \frac{m_{p}}{\sqrt{D_{p}}}\right)^{2} \propto \tag{4}\\
& \frac{\mathbf{1}}{\mathbf{A}^{1 / 3}}\left(\sum_{\mathbf{p}} \frac{\mathbf{m}_{\mathbf{p}}}{\sqrt{\mathbf{D}_{\mathbf{p}}}}\right)^{2} \asymp \frac{\mathbf{1}}{\mathbf{A}^{1 / 3}}\left(\mathbf{p}_{\mathbf{f}}+2\right)^{4} \approx(\mathbf{3 / 2})^{4 / 3} \mathbf{A} \tag{5}\\
& \text { Variant } \frac{m_{p}}{\sqrt{D_{p}}} \longrightarrow \frac{m_{p}}{\sqrt{D_{p}}}\left(1+\frac{\alpha}{\sqrt{D_{p}}}\right) \equiv \frac{m_{p}}{\sqrt{D_{p}}} u_{p} \tag{6}
\end{align*}
$$

Looks and origin of the Master Term

Just in case you wonder what we are up to:

Master Term contains bulk LD ; and some more...

Master shell effects. $\mathbf{A}^{1 / 3}$ scaling

The two variants lead to different asymptotics

$$
\begin{aligned}
& M_{A} \asymp 17.05 A-20.87 A^{1 / 3} \\
& M_{A}^{V} \asymp 17.27 A-10.57 A^{2 / 3}-5.13 A^{1 / 3}
\end{aligned}
$$

Master shell effects produced by M_{A} and M_{A}^{\vee} for $t=N-Z=0$. They are parabolic segments bounded by HO closures at $N=8,20,40$, 70,112 and 168 , that scale asymptotically as $A^{1 / 3}$

The HO-EI transition

Big Problem: to transform HO closures into extruder-intruder (EI) ones at $\mathrm{N}, \mathrm{Z}=28,50,82$ and 126. The $N N$ forces do not do it.

Restrict subshell structure to j_{p} and r_{p}. Relevant operators must be linear, quadratic and cubic forms involving

$$
\begin{aligned}
& m_{p}=m_{j(p)}+m_{r(p)} \text { and } \\
& s_{p}=\left[\left(p m_{j_{p}}-2 m_{r_{p}}\right) /(p+2)\right]=\Gamma_{j r_{r}}^{(1)}
\end{aligned}
$$

The leading DZ10 term

By now it is clear that HO-El transition must involve three body (3b) (Huge open problem. Originally ignored. See later)
DZ28 used some 12 2b terms. DZ10 uses a single leading one

$$
M+S=M+\sum_{p}\left[u^{(1)} s_{p}+u^{(2)} m_{p} s_{p} / \sqrt{D_{p}}\right]
$$

The HO-EI transition for $N-Z=24$ even-even nuclei

DZ10 Stucture and evolution

There are 10 terms:

1. Leading, contains basic shell effects. Goes asymptotically as A.
2. Surface, contains basic shell effects. Goes asymptotically as $A^{2 / 3}$.
3. Asymmetry, $T(T+1) / A$
4. Surface asymmetry, $T(T+1) / A^{4 / 3}$
5. Pairing, $\bmod (N, 2)+\bmod (Z, 2)$
6. Coulomb, $Z(Z-1) / A^{1 / 3}$
7. Cubic spherical "correlation"
8. Surface cubic spherical "correlation"
9. Quartic spherical correlation
10. Quartic deformation

Fits yield

- For the first six "macroscopic" terms, RMSD $=2.88 \mathrm{MeV}$ (LD RMSD $=2.35 \mathrm{MeV}$) Looks bad, but
- For the first nine terms, RMSD=717 keV.
- For the ten terms, RMSD $=567 \mathrm{keV}$

The DZI "macro" term and EI "correlations"

Notation, $\bar{m}=D-m \quad m^{(2)}=m(m-1) \rho=A^{1 / 3}$

$$
|\overline{0}\rangle=\left(1+\sum_{k} \hat{A}_{k}\right)|0\rangle \Longrightarrow E=\langle 0| H_{m}|0\rangle+\langle 0| H_{M} \hat{A}_{2}|0\rangle \Longrightarrow
$$

macro; $\quad \frac{m_{v} \bar{m}_{v}}{D_{v} \rho} ; \quad \frac{m_{v} \bar{m}_{v}\left(m_{v}-\bar{m}_{v}\right)}{D_{v}^{2} \rho} ; \quad \frac{m_{v}^{(2)} \bar{m}_{v}^{(2)}}{D_{v}^{3} \rho_{0}}$ SO? GEMO

Digression: DZ rigths and wrongs

Figure: Binding energies related to LD for frdm and dz31 (arbitrary displacements).

Try LD-free \mathbf{H}_{m} from cs ± 1 spectra: DZII GEMO

Evolution of (cs ± 1) spectra from ${ }^{40} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ca}$

Some examples of cs ± 1 spectra

12	Ca	2019	33	Ca	2021	2	K	1928	33	Ca	2027
2	1.9	2.40	13	1.9	2.00	12	0.2	0.36	12	2.6	2.58
22	6.2	6.00	3	3.8	4.00	22	5.7	5.70	2	3.2	2.60
1	13.7		23	5.9	6.00	1	14.2		22	8.6	8.00
			44	7.5				znc			ffc
13	Ca	2029	33	Sc	2128	13	Ni	2829	24	Zr	4051
3	1.9	2.00	13	4.0	4.00	23	1.0	0.77	4	1.2	1.20
23	3.9	4.00	3	5.5	5.50	3	1.4	1.11	14	2.1	2.00
44	4.9		23	5.0	4.70	44	3.3	3.50	34	3.0	2.70
24	8.3	ffi	44	8.2	zni	24	7.1		55	3.6	
44	In	4982	14	Sn	5081	35	Sn	5083	34	Sb	5182
3	0.1	0.35	4	0.3	0.33	45	1.2	(1.56)	24	1.3	0.96
13	1.2		55	0.9	0.24	15	1.3	(0.85)	55	2.7	2.79
23	3.8		24	1.6	1.52	5	2.3	(2.00)	14	2.9	2.71
33	7.8		34	2.4	2.43	66	2.3		4	2.9	
4	TI	81126	5	Pb	82125	46	Pb	$82 \quad 127$	45	Bi	83126
14	0.5	0.35	25	0.5	0.57	56	0.9	0.78	35	1.2	0.90
55	1.2	1.35	15	0.7	0.90	26	1.2	1.57	66	2.2	1.60
24	1.9	1.68	66	1.6	1.63	77	1.9	1.42	25	2.6	2.83
34	4.4	4.60	35	2.1	2.34	6	2.0	2.03	15	2.9	3.12
44	7.9		45	3.0	3.41	36	2.3	2.49	5	3.6	3.60
			55	8.2		16	2.6	2.54	46	7.0	

Excitation energies. Orbits labeled by $j-1 / 2 p$, so 12 and 2, say, stand for $j=3 / 2$ and $j=1 / 2$ in the $p=2$ shell, (i.e. $0 d_{3 / 2}$ and $1 s_{1 / 2}$).

cs ± 1 gaps. NOT included in fit

	C	$\mathbf{6} \mathbf{6}$	O	$\mathbf{8} \mathbf{8}$	O	$\mathbf{8} \mathbf{1 4}$	Si	$\mathbf{1 4} \mathbf{1 4}$
$\Delta \mathrm{N}$	7.9	13.78	6.5	11.52	4.0	4.11	7.1	8.71
$\Delta \mathrm{Z}$	7.9	$\mathbf{1 4 . 0 1}$	6.5	11.53	6.5	9.99	7.1	8.84
	Ca	$\mathbf{2 0} \mathbf{2 0}$	Ca	$\mathbf{2 0} \mathbf{2 8}$	Ni	$\mathbf{2 8} \mathbf{2 8}$	Ni	$\mathbf{2 8} \mathbf{4 0}$
$\Delta \mathrm{N}$	5.2	7.28	4.8	4.80	7.4	6.39	2.8	2.85
$\Delta \mathrm{Z}$	5.2	7.24	4.9	6.18	7.4	6.47	6.4	5.91
	Ni	$\mathbf{2 8} \mathbf{5 0}$	$\mathbf{Z r}$	$\mathbf{4 0} \mathbf{5 0}$	Sn	$\mathbf{5 0} \mathbf{8 2}$	Pb	$\mathbf{8 2} \mathbf{1 2 6}$
$\Delta \mathrm{N}$	5.7		4.7	4.77	$\mathbf{4 . 3}$	4.89	3.0	3.43
$\Delta \mathrm{Z}$	6.5		1.8	2.00	5.5	6.07	3.5	4.20

$\Delta N=2 B E(Z N)-B E(Z N+1)-B E(Z N-1)$
$\Delta Z=2 B E(Z N)-B E(Z+1 N)-B E(Z-1 N)$.
Calculated first, experimental next.

GEMO masses

How does DZ10 monopole relate to "true" GEMO H_{m} ? Calculate GEMO masses subject to a 2.5 contraction and add LD.

Beware of y-axis scales. Comment on RMSD
Comment on majestic cubics.

Predicted monopole shell effects for $\mathrm{t}=8,40$

corrected asymptotics, 2.5 compression

- If a closure exists, it is there, but;
- If it is there, it does not necessarily exist.
$N=22, Z=14$ erased closure. $N=28, Z=20$ and $N=36, Z=28$ good closures. $N=40, Z=32$ erased closure. $N=50, Z=42$ and $N=58, Z=50$ good closures.

Speculate on 3b Master

$$
\begin{align*}
& A=\sum_{p} m_{p}=\sum_{p=0}^{p_{f}} 2(p+1)(p+2) \Longrightarrow \frac{2\left(p_{f}+3\right)^{(3)}}{3} \tag{7}\\
& \mathcal{K}^{d}=\frac{\hbar \omega}{2} \sum_{p} m_{p}(p+3 / 2) \Longrightarrow \frac{\hbar \omega}{4}\left(p_{f}+3\right)^{(3)}\left(p_{f}+2\right) \tag{8}\\
& \mathcal{V}^{d} \approx \hbar \omega \mathcal{V}_{0}\left(\sum_{p} \frac{m_{p}}{\sqrt{D_{p}}}+\hat{\Omega}\right)^{2} \Longrightarrow \hbar \omega \mathcal{V}_{0}\left[p_{f}\left(p_{f}+4\right)\right]^{2} \tag{9}
\end{align*}
$$

As \mathcal{K}^{d} and \mathcal{V}^{d} go as $\hbar \omega$ no way to saturate. Try to add

$$
\begin{align*}
& \mathcal{V}^{d_{3}} \approx(\hbar \omega)^{2} \beta \mathcal{V}_{0}\left(\sum_{p} \frac{m_{p}}{D_{p}}+\hat{\Omega}_{1}\right)\left(\sum_{p} \frac{m_{p}}{\sqrt{D_{p}}}+\hat{\Omega}_{2}\right)^{2} \\
& \Longrightarrow(\hbar \omega)^{2} \beta \mathcal{V}_{0} p_{f}^{3}\left(p_{f}+4\right)^{2} . \tag{11}
\end{align*}
$$

ETC...

The correct HO-EI transition mechanism I Monopole technology: Invariant decomposition

Use $D^{(2)}=D(D-1), m^{(2)}=m(m-1), \bar{m}=D-m$. Define

$$
\begin{align*}
& \Gamma_{s t}^{(1)}=\left(\frac{m_{s}}{D_{s}}-\frac{m_{t}}{D_{t}}\right) \frac{D_{s} D_{t}}{D_{s}+D_{t}}=-\left(\frac{\bar{m}_{s}}{D_{s}}-\frac{\bar{m}_{t}}{D_{t}}\right) \frac{D_{s} D_{t}}{D_{s}+D_{t}}=-\bar{\Gamma}_{s t}^{(1)} \tag{12}\\
& \Gamma_{s t}^{(2)}=\left(\frac{m_{s}^{(2)}}{D_{s}^{(2)}}+\frac{m_{t}^{(2)}}{D_{t}^{(2)}}-\frac{2 m_{s} m_{t}}{D_{s} D_{t}}\right) \frac{D_{s}^{(2)} D_{t}^{(2)}}{\left(D_{s}+D_{t}\right)^{(2)}}=\bar{\Gamma}_{s t}^{(2)} \equiv \Gamma_{s t}^{(2)}\left(\bar{m}_{s}, \bar{m}_{t}\right) \tag{13}
\end{align*}
$$

and replace "cartesian" linear and quadratic forms by invariant ones

$$
\begin{gather*}
m_{s} \equiv m_{p}+\Gamma_{s 1}^{(1)} \tag{14}\\
\frac{m_{s}\left(m_{t}-\delta_{r s}\right)}{1+\delta_{r s}} \equiv \frac{1}{2} m_{p}\left(m_{p}-1\right)+\left(m_{p}-1\right) \Gamma_{s t}^{(1)}+\Gamma_{s t}^{(2)} \tag{15}
\end{gather*}
$$

The correct HO-EI transition mechanism II

To bring about correct El transition, modify realistic interaction by adding

$$
\left(a_{2}+b_{2} m_{p}\right) \Gamma_{j(p) r(p)}^{(2)} \equiv \kappa(m) \Gamma_{j(p) r(p)}^{(2)}
$$

Bibliographical Notes

- AMDC. http://amdc.in2p3.fr; http://amdc.in2p3.fr/web/dz.html
- EP:76. E. Pasquini, Ph.D thesis (ULP Strasbourg) Report CRN/76-14
- EPAPZ:78. E. Pasquini and A. P. Zuker, Proceedings of the Topical conference on Physics of Medium Light Nuclei Florence 1978, edited by P. Blasi and R. A. Ricci (Editrice Compositori, Bologna)
- Zuker:94. On the microscopic derivation of a mass formula. A.P. Zuker, Nucl. Phys. A576 (1994) 65.
- Dufour,Zuker:96. The realistic collective Hamiltonian. M. Dufour and A.P. Zuker, Phys. Rev. C 54 (1996) 1641.
- Duflo,Zuker:1995. Microscopic mass formulas. J. Duflo and A.P. Zuker, Phys. Rev. C 52 (1995) R23
- Duflo,Zuker:1999. The Nuclear Monopole Hamiltonian, J. Duflo and A. P. Zuker, Phys. Rev. C 59, 2347 R (1999).
- Duflo,Zuker:2002 Mirror displacement energies and neutron skins. J. Duflo and A. P. Zuker, Phys. Rev. C 66, 051304R (2002).
- LPT:2003. Recent trends in the determination of nuclear masses D. Lunney, J. M. Pearson and C. Thibault RMP 75, pags. 1021-1082 (2003).
- Caurier et al.:2005. The Shell Model as a Unified View of Nuclear Structure: E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A. P. Zuker, nucl-th/0402046. RMP.77, pags. 427-488 (2005).
- Zuker:2003. Three body monopole corrections to the realistic interactions, A. P. Zuker PRL 90042502.
- Schwenk,Zuker:2006. Shell-model phenomenology of low-momentum interactions Achim Schwenk and Andrés P. Zuker, Phys. Rev. C 74, 061302(R) (2006).
- MHZ:09. Mendoza-Temis, J. G. Hirsch and A. P. Zuker, The anatomy of the simplest Duflo-Zuker mass formula, nucl-th 09 120882.

MODEL	AME03	DZ10	DZ31	FRDM	FRDM(DZ10)	FRDM(DZ31)	ト
AME03	0.000	0.551	0.363	0.655	0.618	0.578	0.543
DZ10	0.551	0.000	0.427	0.721	0.282	0.457	
DZ31	0.363	0.427	0.000	0.662	0.495	0.491	
FRDM	0.655	0.721	0.662	0.000	0.663	0.464	
FRDM(DZ10)	0.618	0.282	0.495	0.663	0.000	0.000	
FRDM(DZ31)	0.578	0.543	0.457	0.491	0.464	0.655	0.497
HFB17	0.581	0.770	0.603	0.735	0.764	0.202	0.466
HFB17(DZ10)	0.590	0.219	0.470	0.689	0.556		
HFB17(DZ31)	0.471	0.567	0.339	0.657			

More of the same for Sn

Comment on contraction factor

Example of monopole drift in Sb

How filling $0 h_{11 / 2}$ changes things; $\mathrm{E}=0$ for $1 d_{5 / 2}$.

DZII on cs ± 1 : Trick to separate bulk

(Duflo.Zuker:1999)

$$
\begin{gather*}
M_{A}-4 K=\left(\sum_{p} \frac{m_{p}}{\sqrt{D_{p}}}\right)^{2}-2 \sum_{p} m_{p}(p+3 / 2) \\
H_{m}^{s}=M_{A}-4 K+1 \cdot s+I \cdot I+2 \mathrm{~b} \text { drift terms } \tag{16}
\end{gather*}
$$

Six-parameter fit to 90 known $c s \pm 1$ spectra \Longrightarrow rmsd $\overline{5} 220 \mathrm{keV}$

How DZ10 correlation works $\mathrm{t}=8,40$

How DZ10 correlation works $t=16,24$

Deformation in DZ10

Deformation

Schematic single particle spectrum above ${ }^{132} \mathrm{Sn} . r_{p}$ is the set of orbits in shell p excluding the largest. For the upper shells the label $/$ is used for $j=I+1 / 2$

$B(E 2) \uparrow$ in $e^{2} b^{2}$ compared with experiment

$$
\begin{align*}
& Q_{0}=56 e_{\pi}+(76+4 n) e_{\nu}, \tag{17}\\
& B(E 2) \uparrow=10^{-5} \mathrm{~A}^{2 / 3} Q_{0}^{2}
\end{align*}
$$

N	Nd	Sm	Gd	Dy
92	4.47	4.51	4.55	4.58
	$2.6(7)$	$4.36(5)$	$4.64(5)$	$4.66(5)$
94	4.68	4.72	4.76	4.80
			$5.02(5)$	$5.06(4)$
96	4.90	4.95	4.99	5.03
			$5.25(6)$	$5.28(15)$
98	5.13	5.18	5.22	5.26
				$5.60(5)$

