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Observed binary systems
• 5 “certain” systems (= both masses accurately measured)

• 5 more “likely” systems (= mass function consistent with ns)

(see  Lorimer, Living Reviews in Relativity (2008))

• estimated ns-ns rates:
‣ based on observed systems: 1.5 x 10-5 - 2.9 x 10-4 (yr galaxy) -1
  (95% conf. lev.; Kalogera et al. 2004)
‣ from population synthesis: similar numbers

• ns-bh rates:
‣ not accurately known
‣ estimates from 10 times more (Bethe & Brown 1998) to 100 times less  

  (Belczynski et al. 2007)

• NO observed ns-bh system!
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II. Why are such systems interesting?

a) Fundamental physics
• Tests of theory of  gravity

• Direct detection of gravitational waves (LIGO, VIRGO, GEO,...;
   in advanced stages: detection out to z~0.1)

• Maximum neutron star mass: hadronic interaction at high 
  density (ρ >> ρnuc≈ 2 x 1014 g/cm3)

b) Astrophysics
• Nucleosynthesis: are compact binary mergers sources of 
  rapid neutron capture (“r-process”) nuclei?

• Gamma-ray bursts: do they power (about 1/3 of) the el.mag.
   most luminous explosions in the Universe?
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   grav. wave amplitude h ∝ 1/r
   ⇒ accessible volume enhanced by > factor 1000

initial LIGO

Advanced LIGO
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• “multi-messenger” approach will provide additional information on:
• astrophysical events and their rates
• their environment (host galaxies, ambient medium, ...)
• the physics of the sources

• expected to be online ~2016

• nsns and nsbh binary systems are main targets

• expected detection rates (Abadie et al. 2010):

• 0.4 - 400 yr-1 nsns
• 0.2 - 300 yr-1 nsbh

large uncertainties!!

• first detections may be ambiguous/near detection threshold, additional 
   signatures may give confidence, enhancement of detection efficiency

Which additional signatures are produced 
by compact object encounters?
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Where are r-process nuclei produced in the cosmos?

requirements on astrophysical scenario
a) high temperatures ~ 109 K
b) high neutron to seed ratio, low Ye

c) short time scales

core-collapse supernovae seem seriously challenged 
producing all the “r-process” material 
(e.g. Roberts et al. 2010, Fischer et al. 2010, Arcones & Janka 2011)

interesting alternative: decompression of neutron star matter, e.g. in a neutron star 
merger (Lattimer & Schramm 1974, Eichler et al. 1989, Freiburghaus et al. 1999, Roberts et al. 2011, Goriely et al 
2011, Korobkin et al. 2012...)

“explosion in neutron-rich environment”

 (at least)  two sources:
   a) “weak”  (Z<56):  varying abundance patterns
   b) “strong” (Z>56):  extremely robust abundance 
                          patterns

(Cowan & Sneden 2006)

clues from metal-poor stars:
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neutrino-driven winds

  !v"! 0.1c

⇒ dynamic ejecta

      !v"! 0.1c

ultra-relativistic 
outflow, " > 100

interaction region 
jet-wind, " ~ few (?)

How does a compact binary merger enrich 
its environment with neutron-rich matter? 

+ late-time disk-disintegration



III. Recent results
Simulation ingredients:

• 3D, Lagrangian Hydrodynamics (SPH) & (Newtonian) Gravity 

neutrino optical depths

τν > 104

τν ∼ 1
τν ≈ 0

References:
• SR & Davies, MNRAS 334, 481 (2002)
• SR & Liebendörfer,  MNRAS 342, 673 (2003)
• “MAGnetohydrodynamics for Merger Applications”; 
  SR & Price, MNRAS 379, 915 (2007)) 

• neutrino emission:  
  opacity-dependent multi-flavour 
  leakage scheme

• equation of state: density, temperature and composition
  dependent nuclear equation of state (Shen et al. 1998)
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1.8 & 1.2       t= 21.4 ms

1.8 & 1.6       t= 13.0 ms

1.8 & 1.8       t= 14.0 ms

m1

m2
 asymmetry in masses  
 leads to:

- pronounced single tidal
  tail

- larger ejected masses

- larger ejecta velocities

⇒larger el.mag. luminos. 

  (“macronovae”, radio  
   flares)
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A. Double neutron star mergers
• masses close to 1.4 Msol

• small asymmetry: m1= 1.3 Msol, m2= 1.4 Msol, q= 0.929
• stellar spins negligible (Bildsten et al. 1992, Kochanek 1992)

• peak temperatures: ∼ 40 MeV (≈ 4 x 1011 K)
  (in vortices) few milliseconds!
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• neutrino emission:
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• observed radiation is produced in ultra-relativistic outflows (Γ≈300), 
i.e. v≈0.99998 c  (large energy + ms-variability + opt. thin)

very non-trivial problem “Baryonic Pollution”

• sphere with (thermal) energy E and baryonic 
   mass expands to an asymptotic Lorentz factor

Γasym ≈
E

mc2

• to reach a Lorentz factor          it 
   cannot be “loaded” with  more mass than

Γasym

mcrit = 2× 10−6M⊙
E/1051erg
Γasym/300

How does Nature separate mass from energy?

• compact binary mergers are thought to produce (short) 
  Gamma-ray Bursts
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Lν ~  1053 erg/sν-Luminosities:

“baryon-free”: can ultra-relativistic 
outflow be launched here???

~20 MeV~ 4 MeVtemperatures:

(1 MeV= 1010 K)

neutrino-driven winds are 
likely to be important !!

“Baryonic pollution”
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• effects of neutrino-heating not accounted for in current SPH-code(s)
• approach:
i)  3D merger simulation (MAGMA-code; SR&Price (2007))
ii)  mapping on 2D grid
iii) use 2D neutrino-radiation-hydrodynamics 
    calculation with VULCAN code  
     (Livne et al. ‘04,Burrows et al. ‘07)

strong, non-relativistic (≈ 0.1c) baryonic outflow,
no relativistic outflow possible as long as the central neutron 
star is alive!
relativistic outflow only after collapse to bh?

Neutrino-driven winds

νe + n → e + p

ν̄e + p → e+ + n

dM

dt
∼ 10−3 M⊙

s

mass loss:

➡ driven by:

➡ rate:

(Dessart et al. 2009)
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Dynamical mass ejection

typical merger case: 
1.3 & 1.4 Msol, no spin

visualized: 
Ye value at given 
optical depth

total amount: 0.014 Msol

extremely neutron rich: Ye≈ 0.03,
with small crust contaminations

velocity v≈ 0.1 c



“r-process in action” (Korobkin, Rosswog, Arcones, Winteler 2012)

dynamic ejecta



“r-process in action” (Korobkin, Rosswog, Arcones, Winteler 2012)

dynamic ejecta



“r-process in action” (Korobkin, Rosswog, Arcones, Winteler 2012)

dynamic ejecta



10-8

10-7

10-6

10-5

10-4

 120  130  140  150  160  170  180  190  200  210

Yi

Mass number A

ns1.0-ns1.0
ns1.4-ns1.4
ns1.2-ns1.2
ns1.2-ns1.0
ns1.4-ns1.0
ns1.4-bh5
ns1.4-bh10

• final abundances



 ⇒ all 23 cases produce practically 

     identical abundance patterns; 
     independent of the properties 
     of the merging compact binary 
     system

10-8

10-7

10-6

10-5

10-4

 120  130  140  150  160  170  180  190  200  210

Yi

Mass number A

ns1.0-ns1.0
ns1.4-ns1.4
ns1.2-ns1.2
ns1.2-ns1.0
ns1.4-ns1.0
ns1.4-bh5
ns1.4-bh10

• final abundances



 ⇒ all 23 cases produce practically 

     identical abundance patterns; 
     independent of the properties 
     of the merging compact binary 
     system

10-8

10-7

10-6

10-5

10-4

 120  130  140  150  160  170  180  190  200  210

Yi

Mass number A

ns1.0-ns1.0
ns1.4-ns1.4
ns1.2-ns1.2
ns1.2-ns1.0
ns1.4-ns1.0
ns1.4-bh5
ns1.4-bh10

• final abundances

⇒ but some sensitivity to nuclear

   physics near drip line (mass 
   formula, fission distribution ...)



 ⇒ all 23 cases produce practically 

     identical abundance patterns; 
     independent of the properties 
     of the merging compact binary 
     system

10-8

10-7

10-6

10-5

10-4

 120  130  140  150  160  170  180  190  200  210

Yi

Mass number A

ns1.0-ns1.0
ns1.4-ns1.4
ns1.2-ns1.2
ns1.2-ns1.0
ns1.4-ns1.0
ns1.4-bh5
ns1.4-bh10

• final abundances

⇒ but some sensitivity to nuclear

   physics near drip line (mass 
   formula, fission distribution ...)

• enough ejected to be a major r-process source?



 ⇒ all 23 cases produce practically 

     identical abundance patterns; 
     independent of the properties 
     of the merging compact binary 
     system

10-8

10-7

10-6

10-5

10-4

 120  130  140  150  160  170  180  190  200  210

Yi

Mass number A

ns1.0-ns1.0
ns1.4-ns1.4
ns1.2-ns1.2
ns1.2-ns1.0
ns1.4-ns1.0
ns1.4-bh5
ns1.4-bh10

• final abundances

⇒ but some sensitivity to nuclear

   physics near drip line (mass 
   formula, fission distribution ...)

• enough ejected to be a major r-process source?

ejecta mass x rate interval 
(95%, Kalogera et al. 2004)

0 0.02 0.04 0.06 0.08 0.1 0.12
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

lo
g 10

(M
 [M

so
l y

r -1
])

estimated galactic r-process production rate (Qian 2000)

! galactic r-process production rate
 (Qian 2000)

η≡ 1 - 4 m1m2/(m1+m2)2



 ⇒ all 23 cases produce practically 

     identical abundance patterns; 
     independent of the properties 
     of the merging compact binary 
     system

10-8

10-7

10-6

10-5

10-4

 120  130  140  150  160  170  180  190  200  210

Yi

Mass number A

ns1.0-ns1.0
ns1.4-ns1.4
ns1.2-ns1.2
ns1.2-ns1.0
ns1.4-ns1.0
ns1.4-bh5
ns1.4-bh10

• final abundances

⇒ but some sensitivity to nuclear

   physics near drip line (mass 
   formula, fission distribution ...)

• enough ejected to be a major r-process source?

ejecta mass x rate interval 
(95%, Kalogera et al. 2004)

0 0.02 0.04 0.06 0.08 0.1 0.12
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

lo
g 10

(M
 [M

so
l y

r -1
])

estimated galactic r-process production rate (Qian 2000)

! galactic r-process production rate
 (Qian 2000)

η≡ 1 - 4 m1m2/(m1+m2)2

⇒ every NSNS and NSBH merger produces

    essentially the same abundance pattern!!
    
  



 ⇒ all 23 cases produce practically 

     identical abundance patterns; 
     independent of the properties 
     of the merging compact binary 
     system

10-8

10-7

10-6

10-5

10-4

 120  130  140  150  160  170  180  190  200  210

Yi

Mass number A

ns1.0-ns1.0
ns1.4-ns1.4
ns1.2-ns1.2
ns1.2-ns1.0
ns1.4-ns1.0
ns1.4-bh5
ns1.4-bh10

• final abundances

⇒ but some sensitivity to nuclear

   physics near drip line (mass 
   formula, fission distribution ...)

• enough ejected to be a major r-process source?

ejecta mass x rate interval 
(95%, Kalogera et al. 2004)

0 0.02 0.04 0.06 0.08 0.1 0.12
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

lo
g 10

(M
 [M

so
l y

r -1
])

estimated galactic r-process production rate (Qian 2000)

! galactic r-process production rate
 (Qian 2000)

η≡ 1 - 4 m1m2/(m1+m2)2

⇒ excellent candidates for
   “robust” r-process component!!
    
   (Even IF EOS- and/or GR-effects change the

     ejecta masses by factors of a few) 

⇒ every NSNS and NSBH merger produces

    essentially the same abundance pattern!!
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b) take trajectory, density “as is”, temperatures post-processed from
   entropy production 
c) run network with this density-temperature history
⇒ strictly speaking inconsistent (impact on density evolution ignored)

• new approach (Korobkin, Rosswog + 2013)

(figure from Korobkin et al. 2012)

heating history for ejecta 
trajectory relatively simple:
“const. + power law”
⇒ use fit formulae

⇒ implement heating 

   in hydrodynamics
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• now compare:

   a) ignore heating in hydro  ⇒ post-processing temperature & nucleosyn.

   b) include heating in hydro ⇒ trajectories directly from hydro traject.

⇒ post-processing yields acceptable results!
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 on the further evolution of the remnant?”

• typical merger simulations are 
   short (∼20 ms), numerical time
   step restricted by CFL condition 
   Δt < Δx/cs ∼ 10-7 s 

• we cut out high-density part, 
  follow remnant evolution for 
  as long as 100 years
  (at this point decel. by ambient
   medium)
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without radioactive heating
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• self-similar solution 
• remnant does not become spherical in first 100 years
• still carries memory of initial mass ratio
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• radioactive decays in ejecta power el.mag. transients

• “supernova-like”, but evolve faster and are dimmer

Electromagnetic signals from ejecta: Macronovae

Rosswog, Piran, Nakar, 2013; Piran, Nakar, Rosswog, 2013; Korobkin, Rosswog +, 2013)

( Li & Paczynski 1998, Kulkarni 2005, Rosswog 2005, Metzger et al. 2010... Roberts et al. 2011 ...

• from simulated ejecta properties:

“typical” nsns merger:
 peak after ≈ 3 days
 with Lpeak≈ 5 x 1041 erg/s
 (κ= 1 cm2/g)

“r-process in action”:

merger gravitational wave signal 
should be accompanied by such an 
“r-process powered transient”

⇒

⇒ but: opacities not 
         well known!
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typical case: m1= 1.3 Msol, m2= 1.4 Msol, β= 1

(visualized: 
temperature at 
given optical depth)

 m1= 1.3 Msol, m2= 1.4 Msol, β=1 “grazing impact”Example 1: 



• Example 2: slightly stronger than grazing impact (β=2)

internal flow structures: “chop off” upper half
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• typical nsbh collision ejects ~0.15 Msol, 

    typical nsns collision ~0.05 Msol

• nsbh collisions should be 5 x more 
  common (Lee et al. 2010)

⇒ constraints from r-process nucleosynthesis: they must be rare! 

    (Rcollision << 0.1 Rnsns-merger)

rate constraints from ejecta masses: 

⎫｜
⎬
｜
⎭

on average: 
0.135 Msol ejected 
per collision !
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 Thank you for your attention!


