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Introduction

Overall view of the CBM DAQ
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Introduction
080

The 1st version of CRI - BNL-712 [1]

CRIFW



oduction

Overview of the CRI firmware
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Source: [2], Figure 5.1
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Clock encoded
in serial data
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Implementation of TFC (by KIT) ‘é‘
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m The Timing and Fast Control (TFC) system (developed by KIT) provides distribution of reference clock
and time, and fast control path ([2], Chapter 6).
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FLIM
[

Implementation of FLIM (by FIAS) [3] &5
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Organization of the Control Bus in CRI

Control bus
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m CRilis controlled via PCle interface.

m The same interface is also used for transferring
the detector data via DMA.

m Therefore, the control is implemented
independently for the DMA engine and for the
rest of the CRI FW.
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Control bus
oce

Organization of the Control Bus in CRI
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The main part of the CRI FW is controlled via
Wishbone bus.

The address space is organized hierarchically
and managed with AGWB [4].

AGWB automatically implements bus hierarchy
and registers in VHDL together with software
structures and routines, based on the system
description in XML.

At the beginning of the address space there is a
special Zeropage area supporting error
detection and alarm system.
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pecific part

Control of FEE ASIC in STS ‘é‘

For STS detector a special SMX ASIC has been developed [5].
m The ASIC implements a dedicated HCSTP protocol [6].
m The HCSTP protocol was reused also in other ASICs (e.g. SPADIC used by TRD).

The protocol ensures constant latency downlink communication needed for FEE synchronization.
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Implementation of SMX controller in old DPB

GBT-FPGA
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m Use of slow control interface (IPbus) required implementation of full controller in FPGA

m Routing of command responses consumed significant resources
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Implementation of HCSTP

All blocks are accessible via the Wishbone bus
CROB Component

GBTx
IC&EC

HCTSP downlink

TFC|Interface
m Use of faster PCle interface
P [ enabled splitting TX and RX
parts of controller

m Control handshake is fully
handled by software

GBTx downlink frame

HCTSP downlink and uplink are completely decoupled in the FPGA

link frame




Data concentration
[ Jele)

Data concentration in the CBM STS DAQ '@‘

m The data concentration in the CBM STS DAQ was evolving during the preparation of
the experiment.

m The initial attempt - the full data sorting [7]. It had problems due to beam intensity
fluctuations, and possible data corruption due to transmission errors.

m The second attempt - application of the bin sorter. It was resilient to corrupted data. It
better handled beam intensity fluctuations. However, the amount of data loss was
significant.

m The third attempt - assigning the data to microslices according to their arrival time.
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Data packing into output words
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The data from multiple input channels are delivered as
non-dense streams.

They should be packed into the wider words accepted by
the DMA engine without wasting space.

That packing was a problem in first implementations of the
data concentration [8].

Finally it has been solved by using the specially designed
interconnection networks [9, 10]
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Software
[ ]

Software controlling the CRI .@.

m AGWB enables easy interfacing with various languages including Python and C++.

m The initial development was done mainly in Python due to convenience of interactive
work.

m Certain operations done on the hardware require proper synchronization and
performing them as transactions.

m For that purpose the DCA (Device Control Agent) was written in C++ by Walter Mller
([2], Chapter 5.4).

m Thanks to the Python bindings it is still possible to develop and debug user software in
Python.

m Critical parts are implemented in C++ and performed in a carefully synchronized way.
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https://git.cbm.gsi.de/walters-test-environment/dca-prototype

GERI solution
[

Alternative readout board — GERI .@.

m Using CRl is not possible in all institutes participating in preparation of CBM
experiment.

m An alternative solution has been prepared with a GERI board based on a standard
commercial TEC0330 board. A significant part of development was done in the
framework of EU H2020 EURIZON project.

m The alternative readout chain may use a dedicated GBTx emulator (GBTXEMU) [11]
instead of restricted GBTX ASICs.

m The GERI platform uses a simple HLS-implemented DMA engine [12], prepared
specifically for small installations (e.g. single PC or small cluster).

m That alternative readout chain also will be used for CBM components testing setups,
and is going to be used by other experiments.
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Thank you for your attention!



	Introduction
	GBT-FPGA
	TFC
	FLIM
	Control bus
	Detector specific part
	Data concentration
	Software
	GERI solution
	References

