

CRI firmware for CBM DAQ

Presenter: Wojciech M. Zabołotny¹,

¹Institute of Electronic Systems, Warsaw University of Technology

PANDA FEE/DAQ Workshop 25-26 June 2026

Overall view of the CBM DAQ

ISE

Overview of the CRI firmware

Source: [2], Figure 5.1

・ロト・西ト・ヨト・ヨー うへで

Usage of GBT-FPGA in CRI

+

Implementation of TFC (by KIT)

The Timing and Fast Control (TFC) system (developed by KIT) provides distribution of reference clock and time, and fast control path ([2], Chapter 6).

ISE

Implementation of FLIM (by FIAS) [3]

Organization of the Control Bus in CRI

•0

- CRI is controlled via PCIe interface.
- The same interface is also used for transferring the detector data via DMA.
- Therefore, the control is implemented independently for the DMA engine and for the rest of the CRI FW.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

Organization of the Control Bus in CRI

0.

- The main part of the CRI FW is controlled via Wishbone bus.
- The address space is organized hierarchically and managed with AGWB [4].
- AGWB automatically implements bus hierarchy and registers in VHDL together with software structures and routines, based on the system description in XML.
- At the beginning of the address space there is a special Zeropage area supporting error detection and alarm system.

Control of FEE ASIC in STS

--

- For STS detector a special SMX ASIC has been developed [5].
- The ASIC implements a dedicated HCSTP protocol [6].
- The HCSTP protocol was reused also in other ASICs (e.g. SPADIC used by TRD).

000

The protocol ensures constant latency downlink communication needed for FEE synchronization.

- Use of slow control interface (IPbus) required implementation of full controller in FPGA
- Routing of command responses consumed significant resources

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

Implementation of HCSTP

All blocks are accessible via the Wishbone bus

- Use of faster PCIe interface enabled splitting TX and RX parts of controller
- Control handshake is fully handled by software

Data concentration in the CBM STS DAQ

The data concentration in the CBM STS DAQ was evolving during the preparation of the experiment.

••••

- The initial attempt the full data sorting [7]. It had problems due to beam intensity fluctuations, and possible data corruption due to transmission errors.
- The second attempt application of the bin sorter. It was resilient to corrupted data. It better handled beam intensity fluctuations. However, the amount of data loss was significant.
- The third attempt assigning the data to microslices according to their arrival time.

Data concentration based on bin sorter

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Data packing into output words

- 🎨

The data from multiple input channels are delivered as non-dense streams.

000

- They should be packed into the wider words accepted by the DMA engine without wasting space.
- That packing was a problem in first implementations of the data concentration [8].
- Finally it has been solved by using the specially designed interconnection networks [9, 10]

・ロン ・四 と ・ ヨン ・ ヨン

Software controlling the CRI

- AGWB enables easy interfacing with various languages including Python and C++.
- The initial development was done mainly in Python due to convenience of interactive work.
- Certain operations done on the hardware require proper synchronization and performing them as transactions.
- For that purpose the DCA (Device Control Agent) was written in C++ by Walter Müller ([2], Chapter 5.4).
- Thanks to the Python bindings it is still possible to develop and debug user software in Python.
- Critical parts are implemented in C++ and performed in a carefully synchronized way.

Alternative readout board - GERI

--

- Using CRI is not possible in all institutes participating in preparation of CBM experiment.
- An alternative solution has been prepared with a GERI board based on a standard commercial TEC0330 board. A significant part of development was done in the framework of EU H2020 EURIZON project.
- The alternative readout chain may use a dedicated GBTx emulator (GBTxEMU) [11] instead of restricted GBTX ASICs.
- The GERI platform uses a simple HLS-implemented DMA engine [12], prepared specifically for small installations (e.g. single PC or small cluster).
- That alternative readout chain also will be used for CBM components testing setups, and is going to be used by other experiments.

▲□▶▲□▶★□▶★□▶ = のへの

- [1] Alexander Paramonov. FELIX: the Detector Interface for the ATLAS Experiment at CERN. *EPJ Web of Conferences*, 251:04006, 2021. DOI: 10.1051/epjconf/202125104006.
- [2] CBM Collaboration. Technical Design Report for the CBM Online Systems Part I, DAQ and FLES Entry Stage. GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt, 2023. DOI: 10.15120/GSI-2023-00739.
- Dirk Hutter. An input interface for the CBM first-level event selector. doctoralthesis, Universitätsbibliothek Johann Christian Senckenberg, 2021. https://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/year/2021/docld/59159
- [4] Wojciech M. Zabołotny, Marek Gumiński, Michał Kruszewski, and Walter F. J. Müller. Control and Diagnostics System Generator for Complex FPGA-Based Measurement Systems. *Sensors*, 21(21):7378, November 2021. DOI: 10.3390/s21217378.

Bibliography II

00

- [5] K. Kasinski, R. Kleczek, and R. Szczygiel. Front-end readout electronics considerations for Silicon Tracking System and Muon Chamber. *Journal of Instrumentation*, 11(02):C02024–C02024, February 2016. DOI: 10.1088/1748-0221/11/02/C02024.
- [6] K. Kasinski, R. Szczygiel, W. Zabolotny, J. Lehnert, C.J. Schmidt, and W.F.J. Müller. A protocol for hit and control synchronous transfer for the front-end electronics at the {CBM} experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835:66 – 73, 2016. DOI: https://doi.org/10.1016/j.nima.2016.08.005.
- [7] Wojciech M. Zabołotny. Dual port memory based Heapsort implementation for FPGA. In *Proc. SPIE*, volume 8008, pages 80080E–80080E–9, Wilga, Poland, June 2011. DOI: 10.1117/12.905281.
- [8] Marek Gumiński, Wojciech Marek Zabołotny, Adrian Paweł Byszuk, and Krzysztof Poźniak. Sorting of STS-XYTER2 data for microslice building for CBM experiment. In *Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)*, page 143, Antwerp, Belgium, May 2019. Sissa Medialab. DOI: 10.22323/1.343.0143.

- [9] Marek Gumiński, Michał Kruszewski, Bartosz Marek Zabołotny, and Wojciech Marek Zabołotny. Beneš Network-Based Efficient Data Concentrator for Triggerless Data Acquisition Systems. *Electronics*, 12(6):1437, March 2023. DOI: 10.3390/electronics12061437.
- [10] Wojciech Marek Zabołotny. Scalable Data Concentrator with Baseline Interconnection Network for Triggerless Data Acquisition Systems. *Electronics*, 13(1):81, December 2023. DOI: 10.3390/electronics13010081.
- [11] W.M. Zabołotny et al. GBTX emulator for development and special versions of GBT-based readout chains. *Journal of Instrumentation*, 16(12):C12022, December 2021. DOI: 10.1088/1748-0221/16/12/C12022.
- [12] Wojciech M. Zabołotny. Versatile DMA Engine for High-Energy Physics Data Acquisition Implemented with High-Level Synthesis. *Electronics*, 12(4):883, February 2023. DOI: 10.3390/electronics12040883.

				References O●

Thank you for your attention!