

Presenter: Wojciech M. Zabołotny¹,

¹ Institute of Electronic Systems, Warsaw University of Technology

PANDA FEE/DAQ Workshop 25-26 June 2026

Overall view of the CBM DAQ

Kロメ K個 X K ミメ K ミメ / ミーのダム

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) [Control bus](#page-7-0) [Detector specific part](#page-9-0) [Data concentration](#page-12-0) [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

Overview of the CRI firmware

Source: [\[2\]](#page-17-2), Figure 5.1

K ロ K K 個 X K ミ X K ミ X ミ → の Q Q Q

Usage of GBT-FPGA in CRI

Implementation of TFC (by KIT)

■ The Timing and Fast Control (TFC) system (developed by KIT) provides distribution of reference clock and time, and fast control path ([\[2\]](#page-17-2), Chapter 6).

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) [Control bus](#page-7-0) [Detector specific part](#page-9-0) [Data concentration](#page-12-0) [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

Organization of the Control Bus in CRI

CRI is controlled via PCIe interface.

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) **[Control bus](#page-7-0)** [Detector specific part](#page-9-0) [Data concentration](#page-12-0) [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

- The same interface is also used for transferring the detector data via DMA.
- Therefore, the control is implemented $\overline{}$ independently for the DMA engine and for the rest of the CRI FW.

KO KARK KE KA EK GA GA

Organization of the Control Bus in CRI

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) **[Control bus](#page-7-0)** [Detector specific part](#page-9-0) [Data concentration](#page-12-0) [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

- П The main part of the CRI FW is controlled via Wishbone bus.
- The address space is organized hierarchically and managed with AGWB [\[4\]](#page-17-4).
- AGWB automatically implements bus hierarchy and registers in VHDL together with software structures and routines, based on the system description in XML.
- At the beginning of the address space there is a special Zeropage area supporting error detection and alarm system.

Control of FEE ASIC in STS

- For STS detector a special SMX ASIC has been developed [\[5\]](#page-18-0).
- The ASIC implements a dedicated HCSTP protocol [\[6\]](#page-18-1).
- The HCSTP protocol was reused also in other ASICs (e.g. SPADIC used by TRD).
- The protocol ensures constant latency downlink communication needed for FEE synchronization.

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) [Control bus](#page-7-0) **[Detector specific part](#page-9-0)** [Data concentration](#page-12-0) [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

Implementation of SMX controller in old DPB

- Use of slow control interface (IPbus) required implementation of full controller in FPGA
- Routing of command responses consumed significant resources

Implementation of HCSTP

All blocks are accessible via the Wishbone bus

- Use of faster PCIe interface enabled splitting TX and RX parts of controller
- Control handshake is fully handled by software

Data concentration in the CBM STS DAQ

■ The data concentration in the CBM STS DAQ was evolving during the preparation of the experiment.

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) [Control bus](#page-7-0) [Detector specific part](#page-9-0) **[Data concentration](#page-12-0)** [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

- \blacksquare The initial attempt the full data sorting [\[7\]](#page-18-2). It had problems due to beam intensity fluctuations, and possible data corruption due to transmission errors.
- The second attempt application of the bin sorter. It was resilient to corrupted data. It better handled beam intensity fluctuations. However, the amount of data loss was significant.
- The third attempt assigning the data to microslices according to their arrival time.

Data concentration based on bin sorter

K ロ K K 個 X K ミ X K ミ X ミ → の Q Q Q

Data packing into output words

The data from multiple input channels are delivered as non-dense streams.

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) [Control bus](#page-7-0) [Detector specific part](#page-9-0) **[Data concentration](#page-12-0)** [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

п

- \blacksquare They should be packed into the wider words accepted by the DMA engine without wasting space.
- $\overline{}$ That packing was a problem in first implementations of the data concentration [\[8\]](#page-18-3).
- \blacksquare Finally it has been solved by using the specially designed interconnection networks [\[9,](#page-19-0) [10\]](#page-19-1)

イロメ イ団メ イヨメ イヨメーヨー

Software controlling the CRI

- AGWB enables easy interfacing with various languages including Python and C_{++} .
- The initial development was done mainly in Python due to convenience of interactive work.
- **Example 2** Certain operations done on the hardware require proper synchronization and performing them as transactions.
- For that purpose the [DCA \(Device Control Agent\)](https://git.cbm.gsi.de/walters-test-environment/dca-prototype) was written in C_{++} by Walter Müller ([\[2\]](#page-17-2), Chapter 5.4).
- **Thanks to the Python bindings it is still possible to develop and debug user software in** Python.
- \blacksquare Critical parts are implemented in C++ and performed in a carefully synchronized way.

KO KARK KE KA EK GA GA

Alternative readout board – GERI

- Using CRI is not possible in all institutes participating in preparation of CBM experiment.
- An alternative solution has been prepared with a GERI board based on a standard commercial [TEC0330 board.](https://shop.trenz-electronic.de/en/Products/Trenz-Electronic/PCIe-FMC-Carrier/TEC0330-Xilinx-Virtex-7/) A significant part of development was done in the framework of [EU H2020 EURIZON](https://www.eurizon-project.eu/) project.

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) [Control bus](#page-7-0) [Detector specific part](#page-9-0) [Data concentration](#page-12-0) [Software](#page-15-0) **[GERI solution](#page-16-0)** [References](#page-17-0)

- The alternative readout chain may use a dedicated GBTx emulator (GBTxEMU) [\[11\]](#page-19-2) instead of restricted GBTX ASICs.
- The GERI platform uses a simple HLS-implemented DMA engine [\[12\]](#page-19-3), prepared specifically for small installations (e.g. single PC or small cluster).
- That alternative readout chain also will be used for CBM components testing setups, and is going to be used by other experiments.

KO KARK KE KA EK GA GA

- [1] Alexander Paramonov. FELIX: the Detector Interface for the ATLAS Experiment at CERN. *EPJ Web of Conferences*, 251:04006, 2021. [DOI: 10.1051/epjconf/202125104006.](https://doi.org/10.1051/epjconf/202125104006)
- [2] CBM Collaboration. *Technical Design Report for the CBM Online Systems – Part I, DAQ and FLES Entry Stage*. GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt, 2023. [DOI:](https://doi.org/10.15120/GSI-2023-00739) [10.15120/GSI-2023-00739.](https://doi.org/10.15120/GSI-2023-00739)
- [3] Dirk Hutter. *An input interface for the CBM first-level event selector*. doctoralthesis, Universitätsbibliothek Johann Christian Senckenberg, 2021. [https://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/year/2021/docId/59159](.)
- [4] Wojciech M. Zabołotny, Marek Gumiński, Michał Kruszewski, and Walter F. J. Müller. Control and Diagnostics System Generator for Complex FPGA-Based Measurement Systems. *Sensors*, 21(21):7378, November 2021. [DOI: 10.3390/s21217378.](https://doi.org/10.3390/s21217378)

Bibliography II

- [5] K. Kasinski, R. Kleczek, and R. Szczygiel. Front-end readout electronics considerations for Silicon Tracking System and Muon Chamber. *Journal of Instrumentation*, 11(02):C02024–C02024, February 2016. [DOI: 10.1088/1748-0221/11/02/C02024.](https://doi.org/10.1088/1748-0221/11/02/C02024)
- [6] K. Kasinski, R. Szczygiel, W. Zabolotny, J. Lehnert, C.J. Schmidt, and W.F.J. Müller. A protocol for hit and control synchronous transfer for the front-end electronics at the {CBM} experiment. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 835:66 – 73, 2016. [DOI: https://doi.org/10.1016/j.nima.2016.08.005.](https://doi.org/https://doi.org/10.1016/j.nima.2016.08.005)

[Introduction](#page-1-0) [GBT-FPGA](#page-4-0) [TFC](#page-5-0) [FLIM](#page-6-0) [Control bus](#page-7-0) [Detector specific part](#page-9-0) [Data concentration](#page-12-0) [Software](#page-15-0) [GERI solution](#page-16-0) [References](#page-17-0)

- [7] Wojciech M. Zabołotny. Dual port memory based Heapsort implementation for FPGA. In *Proc. SPIE*, volume 8008, pages 80080E–80080E–9, Wilga, Poland, June 2011. [DOI: 10.1117/12.905281.](https://doi.org/10.1117/12.905281)
- [8] Marek Gumiński, Wojciech Marek Zabołotny, Adrian Paweł Byszuk, and Krzysztof Poźniak. Sorting of STS-XYTER2 data for microslice building for CBM experiment. In *Proceedings of Topical Workshop on Electronics for Particle Physics — PoS(TWEPP2018)*, page 143, Antwerp, Belgium, May 2019. Sissa Medialab. [DOI: 10.22323/1.343.0143.](https://doi.org/10.22323/1.343.0143)

- [9] Marek Gumiński, Michał Kruszewski, Bartosz Marek Zabołotny, and Wojciech Marek Zabołotny. Beneš Network-Based Efficient Data Concentrator for Triggerless Data Acquisition Systems. *Electronics*, 12(6):1437, March 2023. [DOI: 10.3390/electronics12061437.](https://doi.org/10.3390/electronics12061437)
- [10] Wojciech Marek Zabołotny. Scalable Data Concentrator with Baseline Interconnection Network for Triggerless Data Acquisition Systems. *Electronics*, 13(1):81, December 2023. [DOI:](https://doi.org/10.3390/electronics13010081) [10.3390/electronics13010081.](https://doi.org/10.3390/electronics13010081)
- [11] W.M. Zabołotny et al. GBTX emulator for development and special versions of GBT-based readout chains. *Journal of Instrumentation*, 16(12):C12022, December 2021. [DOI: 10.1088/1748-0221/16/12/C12022.](https://doi.org/10.1088/1748-0221/16/12/C12022)
- [12] Wojciech M. Zabołotny. Versatile DMA Engine for High-Energy Physics Data Acquisition Implemented with High-Level Synthesis. *Electronics*, 12(4):883, February 2023. [DOI: 10.3390/electronics12040883.](https://doi.org/10.3390/electronics12040883)

Thank you for your attention!