

Overview CB-ELSA DAQ system

26.06.2024 Ch. Schmidt

Outline

- CB-ELSA/TAPS experiment
- DAQ-system
- Sync-system
- Ideas for the future

Introduction - CB-ELSA/TAPS experiment

Monitor

"Features" of a photon beam:

• No fixed energy (Bremstrahl-spectrum)

 Photon cross section for pair production + compton scattering in a liquid hydrogen target is roughly 1000 times higher than $\gamma p \rightarrow pX$:

Introduction - CB-ELSA/TAPS experiment

Current CB-ELSA/TAPS experiment

DAQ – push architecture

Detector readout

Hybrid system

- VMEbus based modules
 - CPU readout, sync-handling, transport
 - FPGA based readout, cluster finding, transport
 - Custom boards (TAPS)
- Crystal Barrel readout
 - based on PANDA FWEC SADC
 - levb on FPGA

Deadtime from readout 50-100µs 10kHz Trigger rate → 50-70% livetime

LEVB

detektorspezifische Elektronik

SyncMaster

SyncClient

Example VME based FPGA board

Cluster finder hardware (trigger / readout)

based on Xilinx Spartan 6 board (ELB)

- TDC implementations
 - tapped delay line TDC
 (7bit per 5ns clock cycle → ~40ps)
 - sampling TDC based on deserializer
 (2bit per 5ns cycle → ~1ns)
- Distributed cluster finding logic (special backplane to interconnect boards)
- Discriminators on mezzanine card

replaced VMEbus data transport via ext. Gbit card

Sync - system

Detectors are read out individiually and in parallel. Sync system used to ensure no subdetector misses a trigger.

checks for

- successful readout (Busy, OK)
- data integrity (common buffer number)

Sync – system / asynchronous readout

- large buffer available on readout boards
- no need to wait until all data transfered to CPU
- only wait until ready to accept new trigger
- data transfer while waiting for the next trigger
- Not limited to VME readout: high-latency transfer (e.g. ethernet) also possible

SADC - Upgrade

Concept of LEVB can be integrated on FPGA

Crystal Barrel SADC readout platform flexibel for triggered or free running readout

→ Choice by adaption of firmware

COSY test beamtime

CB firmware capable of self triggering, but readout is done over 32chs

No central trigger

- → self triggered
- Readout of 32chs and transport introduces significant deadtime. (waveform transmitted)
- To avoid incomplete events sADCs are blocked (disarmed) for some time

Firmware will be updated to single channel readout.

Future upgrade CB-ELSA

PANDA-FWEC-EMC

For the upgrade many new detectors will enter

- Pixels
- GEMs
- Straws

New detectors will be FPGA based readout systems

→ CB-ELSA DAQ needs further improvements to integrate new systems

Future DAQ

Summary

- Current DAQ-system is running fine and is sufficient for current needs

Future upgrade

- Detailed design/planning:
- integration of new systems with more free running architecture
- forward endcap needs some "cluster finder" for trigger
- introducing a common time reference for event matching
- Transition from a triggered to a more free running system:
- new detectors might need it for trigger/filter
- reuse "hardware trigger" for a time window to look for wanted events
 - → e.g. reduce data rates from tagging system