PANDA Collaboration Meeting 24/2 PANDA FEE/DAQ Workshop

Nest DAQ

featuring conti. RO w/ FairMQ

and related topics

Content:

NestDAQ Over View

Development status from the test BM

Ken Suzuki <<u>ken.suzuki@rcnp.osaka-u.ac.jp</u>> Kotaro Shirotori

26.06.2024

SPADI Alliance

Signal processing and data acquisition infrastructure alliance

- Since ~2022.
- Developing a next generation DAQ/FEE system for nuclear/hadron physics experiments.
- Standardisation, in Japan and beyond.
- Participation from majority of nuclear/hadron physics institutes in Japan.
 - RCNP, KEK
- c.f. Collider Electronics Forum. OpenIT

 very active, relatively a small number of developers https://www.rcnp.osaka-u.ac.jp/~spadi/

SPADI Alliance

Signal processing and data acquisition infrastructure alliance

No ASIC Development (so far)

NestDAQ on GitHub

••• ••• •• •• •• ••	🔒 github.com/spadi-a liance/nestdaq	@p &	⊕ ů + ©
😑 🌎 spadi-alliance / nestdaq	Q Type[]] to search)	× + • 💿 🏚 🚇 📗
⇔ Code ⊙ Issues ④ 11 Pull requests	💿 Actions 🖽 Projects 🕕 Security 🗠 Insights		
🔝 nestdaq (Public)		💿 Wetch 👍 🧃	• ♀ Fork 5 • ☆ Star 3 •
🐉 main 👻 🕈 1 Branch 🛇 2 Tags	Q. Go to file t	<> Code -	About
🍚 tntakahashi Merge pul request #35 from no	bukoba/main 🚥 0d0e761 · 5 months ago	() 45 Commits	A streaming DAQ implementation for the particle mesurements
Controller	- add TelemetryPlugin, which outputs log to stdout	5 months ago	🛱 Resdme
examples	- add TelemetryPlugin, which outputs log to stdout	5 months ago	Ф MIT license - Activity
plugins	close #32, fix #33	5 months ago	E Custom properties
scripts	- add TelemetryPlugin, which outputs log to stdout	5 months ago	☆ 3 stars ③ 4 watching
in share	- add checkboxes to wait state transitions (close #26)	6 months ago	Υ 5 forks
🗋 .gitignore	import files	2 years ago	Report repository
CMakeLists.txt	A type (add_compiler_options> add_compile_optio,,,	5 months ago	Releases 2
INSTALL.md	- Changes: WebGui, html	last year	© RCNP202307 (Latest)
C LICENSE	Initial commit	2 years ago	+ 1 release
README.md	Update README.md	2 years ago	
		ℓ :≡	No packages published
NestDAQ			Contributors 3
A streaming DAQ implementation for the p	particle measurements		igalashi
Tested system			📋 nobukoba

NestDAQ Dependencies

NestDAQ

A streaming DAQ implementation for the particle measurements

Tested system

System	Version	Compiler	CMake
CentOS	7	GCC 8.3.1 (devtoolset-8)	3.14.6 or later (epel: cmake3)

External packages used with NestDAQ

Packages	Version	URL			
Redis	6.0.10	https://github.com/redis/redis/			
Redis TimeSeries	1.4.18	https://github.com/RedisTimeSeries/RedisTimeSeries/			
Grafana					
Dependencie	es to build	NestDAQ			
Packages	Version	URL			
h a a a t					
DOOST	1.72.0 or late	er			
FairLogger	1.72.0 or late 1.9.0 or later	er			
FairLogger FairMQ	1.72.0 or late 1.9.0 or later 1.4.26 or late	er e			
FairLogger FairMQ hiredis	1.72.0 or late 1.9.0 or later 1.4.26 or late 1.0.0	er er https://github.com/redis/hiredis/			

Streaming DAQ based on FairMQ

Redis on memory database

NestDAQ Features

- Continuous Readout (based on FairMQ)
- Scalable
- Clock synchronisation (MIKUMARI)
- Data transfer with SiTCP* (TCP implementation on FPGA)
 - 10 Gbps / 1 Gbps
- data stream, divided into a time interval, Heart-Beat-Frame (HBF)
 - 125 MHz, 16bit = 524.288 μs
- CPU/GPU
- Replayer

*https://www.sitcp.net/

DAQ Controller

•••	2.75 🕴 💩	Centil 🔒	Slow) 🐴 Slow	D 🛪 SicwPl	M Slow? - M	SlovP 🛪 SlovP	DAQ 0	o x	>	+ `	/	
) 🔀 eEOserverO	3.intra. j-parc	.j p :8080			ŝ	${f igside }$	$\overline{+}$	0	ځ 🗟	≡ נ	
DAO controller												
RUN number												
New value: 2048 Next : 2048 Latest : 2048 Start : Stop :	Sen	d +1 Get	🗹 Auto increa	nent at RUN-St	p							
State transition co	mmand											
🗹 Wait Device Ready 🗹 W	ait Ready											
Idle ⊳ Running												
Idle > Init Device and Conne	etion Device Rea	ıdy ⊳ Init Ta	sk ⊳ Ready ⊳ [Run Þ Running	r.							
Idle ⊲ Running												
Idle 🗠 Reset Device 🗠 Devi	ice Ready -1 Rese	nt Task 🖪 Re	ady 🗠 Stop 🗠	Running								
⊳ Exit												
Any state > End > Exiting												
State Summary												
Service	N Undef. Ok	Error Idleil	nit-Device Init	. Bind. Bound Cor	nn.Device-Ready	/Init-Task Readvi	Runninal	Reset-	TaskiR	eset-De	vice Exi	ting last-update
AnQStrldcSampler	39						39					2024-86-02187:45:57
DecSink	4						4					2024-86-02187:45:58
FileSink	4						4					2024-86-02187:45:37
Filter TimeFrameSliceBySone	thing 8						8					2024-86-02187:45:52
LogicFilter	4						4					2024-86-02187:45:57
STFBuilder	39						39					2024-86-02187:45:57
TimeFrameBuilder	2						2					2024-86-02187:45:57
TimeFrameSlicerByLogicTimi	ng 8						8					2024-86-02187:45:50
												-

Slow Dash

- "slow" communication with FEEs using RBCP
 - Remote Bus Control Protocol, a simple memory access protocol for SiTCP
- Get scaler information implemented on FPGAs, show data rate, hit patterns, time trends, <u>independently from DAQ</u>

E.g. SiPM Gain Calib.

Log Transformed V Values Histogram

E.g. SiPM Gain Calib.

32ch (CITIROC) x 4 (on one FEE card) x 18

2304 ch.

initial status Fine bias adj. per ch. Course bias adj. per ASIC (32ch) Fine bias adj. per ch. 2nd itr.

E.g. temperature monitor

Test with the MARQ Spectrometer@J-PARC

Apr.-May 2024

- Full version $@\pi 20$ beam line
 - 30 MHz 20 GeV/c π⁻ beam,
 - (7 MHz 6 GeV/c p
 beam)
 - ~25k channel (future)

- Test @K1.8BR beam line
 - *K*⁻ beam (<1 MHz)
 - ~5k channel (now)
 - 4.2s spill, 2.0 extraction

Highest requirements among anticipated NestDAQ use cases

higher-level online filtering

The MARQ Spectrometer in future Shirotori, E50 Collab. Meeting 2023

MARQ-E50: charmed baryon spectroscopy, internal structure of charmed baryon, diquark correlations

 $\pi^- + p \rightarrow Y_c^{*+} + D^{*-}$

20 GeV/c π⁻ beam (30 MHz)

High momentum resolution $\Delta p/p \sim 0.1\%$ with dispersion analysis

Test assembly for the 2024Apr BT

Detector	Front-end electronics	Number of modules	Number of channels	
	Clock/time system (MIKUMARI)	4	128	
TOF	FPGA HR-TDC (AMANEQ)	2	128	
Drift chamber	FPGA TDC (AMANEQ)	15	1920	
Fiber tracker	MPPC readout FEE (CIRASAME)	18	2304	

Key Components

Front-End-Electronics (FEE)

- * Total detector channel ~25,000 ch
- ⇒ Streaming DAQ: Only timing data (TDC)
 - FEE: 1G/10Gbps network (Optical link)
 - Timing synchronization (MIKUMARI)
- MPPC detector: ~20,000 ch
 - Scintillating fiber trackers
 - RICH, Beam-RICH, Vth AC
- ⇒ CIRASAME (ASIC: CITIROC)
 - 128 ch Low-resolution TDC ($\Delta T_{LSB} \sim 1 \text{ ns}$)
- Timing detector: ~1,000 ch
 - T0, RPC, TOF: Amp/PMT + Discriminator
- ⇒ AMANEQ (HR-TDC mezzanine)
 - 64 ch High-resolution TDC ($\Delta T_{LSB} \sim 20$ ps)
- Drift chamber: ~4,000 ch
- ⇒ ASAGI(ASD) card + AMANEQ (DC mezzanine)
 - ASD card 32 ch \rightarrow TDC 128 ch
 - Low-resolution TDC ($\Delta T_{LSB} \sim 1 \text{ ns}$)

Shirotori, E50 Collab. Meeting 2023

Other key components

- ? RAYRAW
- TPC readout w/ SAMPA chip (SAMIDARE)
- No-delay-cable QDC
 - Slow ADC -> TDC
 - LPF and slow WF digitiser
- WF digitiser

DAQ

- No Filter: Sampler \rightarrow STFB \rightarrow TFB \rightarrow FileSink
- **Filtered:** TFB \rightarrow LogicFilter \rightarrow EventSlicer \rightarrow High-level Filter \rightarrow FileSink

Ultimately we want 1/1000 data reduction

General HPC nodes

• DAQ PCs

Multiple PC study: DAQ Server performance

From Y. Igarashi

15

e50server03 (192.168.2.51) 1. **10Gbps Network Switch** Data 10G • AMD EPYC 74F3 24-Core Processor AMANEQ $LR \times 8$ FS S5860-20SQ Data 1G • 64 GB Memory eyst-daq01 (192.168.2.54) 2. AMD EPYC 7313P 16-Core Processor AMANEQ $HR \times 2$ 64 GB Memory ** -----• Intel 82599ES 10-Gigabit SFI/SFP + Network Connection (rev 01) AMANEQ LR×7 **10Gbps Network Switch** e50server01 (192.168.2.55) 3. FS S5860-20SQ • Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz CIRASAME×6 • 20-Core • 24 GB Memory e50server05 (192.168.2.53) 4. CIRASAME×12 - ++ -----• Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz • 10-Core 1Gbps/10Gbps Network Switch • 32 GB Memory FS S3900-24F4S 5. nlabdaq5 (192.168.2.20) **DAQ** servers AMD Ryzen 9 3900XT 12-Core Processor • 16 GB Memory 1. e50server03 3. e50server01 4. e50server05 5. nlabdaq5 2. eyst-daq01

DAQ Server performance (Passmark bench CPU)

• DA	Q PCs • e50server03 (192.168.2.51) • AMD EPYC 74E3 24-Core Processor		<u>AMD Ryzen 9</u> <u>3900XT</u>	AMD EPYC 74F3	<u>AMD EPYC</u> <u>7313P</u>	<u>Intel Xeon E5-</u> <u>2630 v4 @</u> <u>2.20GHz</u>	<u>Intel Xeon E5-</u> <u>2640 v4 @</u> <u>2.40GHz</u>
	 64 GB Memory 		<u>\$379 - BUY</u>	<u> \$2585.04 - BUY</u>	<u> \$1204.21 - BUY</u>	<u> \$14.99 - BUY</u>	<u>\$174.9 - BUY</u>
	• eyst_daq01 (192.168.2.54)	Price	Ĩ	ľ	ľ	Ĩ	ľ
	 AMD EFFC 7515P 16-Core Processor 64 GB Memory 	Socket Type	AM4	SP3	SP3	FCLGA2011-3	FCLGA2011-3
	 Intel Corporation 82599ES 10-Gigabit SFI/SFP+ Network Connection (rev 01) 	CPU Class	Desktop	Server	Server	Server	Server
	• e50server01 (192.168.2.55)	Clockspeed	3.8 GHz	3.2 GHz	3.0 GHz	2.2 GHz	2.4 GHz
	• Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz	Turbo Speed	Up to 4.7 GHz	Up to 4.0 GHz	Up to 3.7 GHz	Up to 3.1 GHz	Up to 3.4 GHz
	 20-Core 24 GB Memory 	# of Physical Cores	12 (Threads: 24)	24 (Threads: 48)	16 (Threads: 32)	10 (Threads: 20)	10 (Threads: 20)
	• e50server05 (192.168.2.53)	Casha	L1: 768KB, L2:	L1: 384KB, L2:	L1: 1,024KB, L2:	L1: 640KB, L2:	L1: 640KB, L2:
	 Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz 	Gache	6.0MB, L3: 64MB	3.0MB, L3: 32MB	8.0MB, L3: 128MB	2.5MB, L3: 25MB	2.5MB, L3: 25MB
	10-Core32 GB Memory	TDP	105W	240W	155W	85W	90W

- nlabdaq5 (192.168.2.20)
 - AMD Ryzen 9 3900XT 12-Core Processor
 - 16 GB Memory

CPU Mark Rating

As of 1st of June 2024 - Higher results represent better performance

CPU Single Thread Rating

As of 1st of June 2024 - Higher results represent better performance

AMD Ryzen 9 3900XT	 32,727	AMD Ryzen 9 3900XT	2,749
AMD EPYC 74F3	 60,666	AMD EPYC 74F3	 2,942
AMD EPYC 7313P	 42,032	AMD EPYC 7313P	2,704
Intel Xeon E5-2630 v4 @ 2.20GHz	 11,663	ntel Xeon E5-2630 v4 @ 2.20GHz	1,744
Intel Xeon E5-2640 v4 @ 2.40GHz	 12,374	ntel Xeon E5-2640 v4 @ 2.40GHz	1,932
PassMark Software © 2008-2024		PassMark Software © 2008-2024	

Igarashi, SPADI Meeting June 2024

Beam

NestDAQ process implementation

- TFB: Reconstruction of time frame from HBF
 - Free streaming data (w/o reduction by any selections)
 - All 1-M/spill data can be taken.

⇒ LogicFilter: Timing coincidence

- "Trigger timing" generated w/o reduction
 - UTOF \times LTOF timing
 - Coincidence rate: ~200 k/spill (Reduced by detector size)

⇒ **EventSlicer**: Event finding from "Trigger timing"

- Slicing window applied according to "Trigger timing": ± 1000 ns
 - "Trigger timing" is used as reference timing.
- Timing group in Slicing window = "Event" generated w/ reduction

⇒ **High-level Filter**: Event selection using "Event"

- Event selection like an off-line analysis can be performed.
 - Beam TOF filter: K beam selection using (T_{T1:MeamTime} T_{UTOF:MeamTime})

Data flow with multiple computers

Igarashi, SPADI Meeting June 2024

Data flow with multiple computers

Igarashi, SPADI Meeting June 2024

High-level Filter status \Rightarrow **To be reported by Furukawa-kun**

- Beam TOF filter: K beam selection using (T_{T1:MeamTime} T_{UTOF:MeamTime})
 All timing combinations in "Event" (Timing in Slicing window) are used.
- Correct Beam TOF selection ⇒ High-level filter worked well !

Summary

- NestDAQ under active development by the SPADI alliance
- Just had a test BT with MARQ spectrometer (with the highest demands)
 - Gained a lot of experiences to run a continuous readout in practice
 - Flexible and scalable system
 - low/high level online filtering
- Next steps:
 - higher-level filtering, GPU, full system (x5), storage (CfphFS/SSD caching)