

LHCb/CERN donated the formidable Outer Tracker straw-tube detector to PANDA / GSI / FAIR

15 Joint Scientif Council Meeting - Research

One of 12 frames, 5x6 m², with 4352 straws in 18 modules. (Photo courtesy: LHCb)

Outer Tracker straw-tube brief specs

Straw tube

- Diameter, length: 5 mm, 2.4 m
- Anode wire: 25µm at 1550 V
- Gas mix: Ar/CO₂/O₂

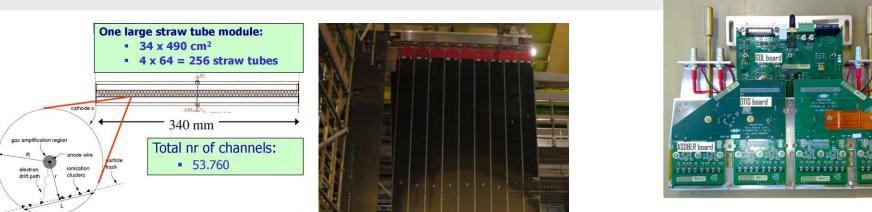
Module

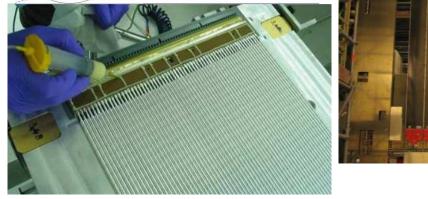
- Independent upper and lower parts
- Each part has 2 staggered layers of 64 tubes
- Singe sided readout
- Front-end electronics on each end of module

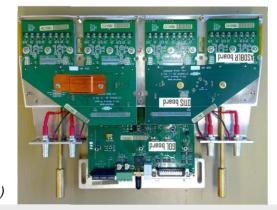
Whole Detector

- 53,760 straw tubes, 216 modules, 432 FEE
- Area coverage: 5 x 6 m² x12 planes

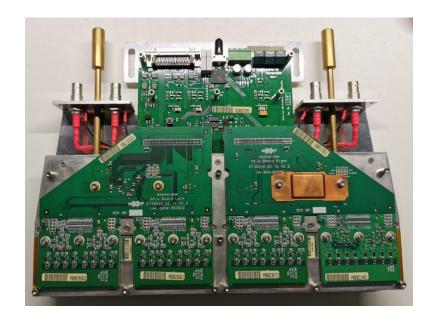
Performance at LHCb (Run1&2)


- $\epsilon \sim 98\%$, $\sigma \sim 170 \, \mu m$
- $\delta p/p \sim 0.4\%$ (2-100 GeV tracks)




Whole OT in transport frame, 7x5.5x3.5 m³, 24t, arrival at GSI, Aug. 25, '23. (Photo courtesy: GSI)

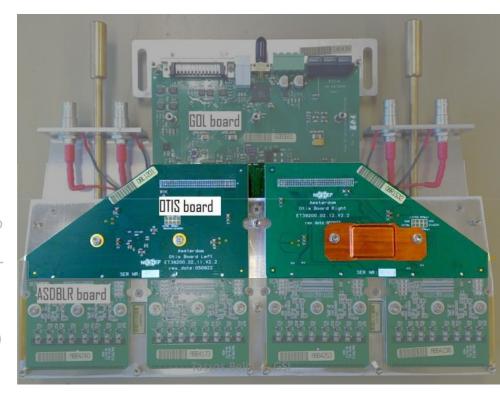
Outer Tracker Detector Elements



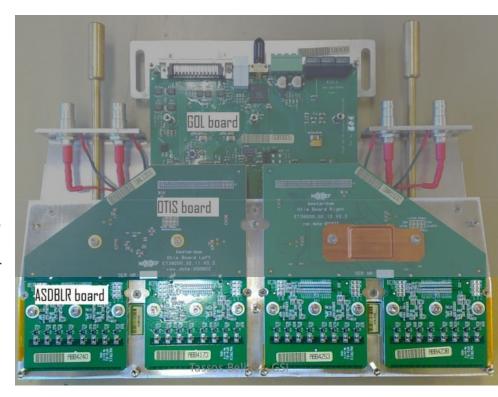
Straw-tubes in a module (left), modules on frame 5x6 m² (middle), FEE Box open (right) (Photos courtesy: LHCb)

Outer Tracker FEE modules

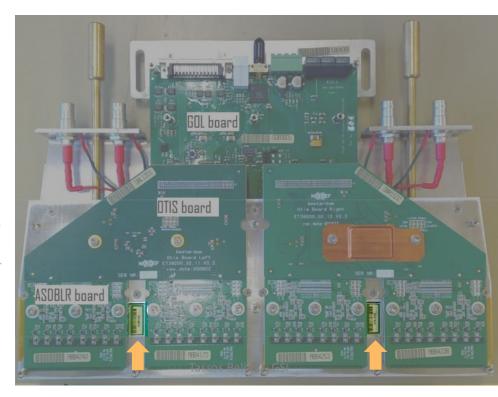
View inside the FEE Box, front side (left) and back side (right).


- GOL/Auxiliary board (1x) that reads out the OTIS boards of a Front End box. The GOL serializes the time information and sends it to the off-detector electronics through a 1.6 Gbit/s optical link.
- OTIS boards (4x) for time measurement, that each take the output of two ASDBLR boards. The OTIS board has a 32 channel TDC-chip that digitizes the hit signal time wrt the LHC Bunch Crossing.
- ASDBLR boards (8x) with ASICs connect to the HV boards to amplify the signals received from these. A board contains two ASDBLR ASICs, that is two 8-channel Amplifier-Shaper-Discriminator with ion-tail cancellation and BaseLine Restoration. (Designed for ATLAS TRT Readout)
- High Voltage boards, (hidden behind the aluminium chassis) plug into a module's feed-through board. Distribute HV to 128 anode wires and pass the straw signals to the ASICs.

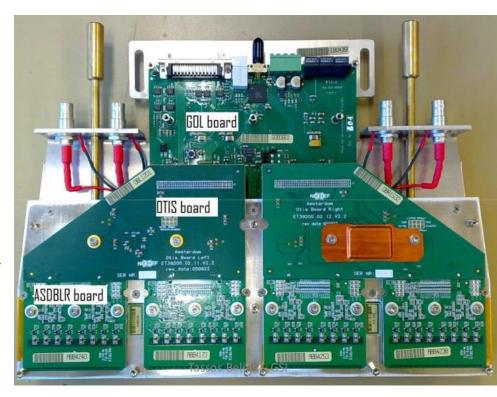
FEE Box boards on one side & another set of same boards on the other side.


- GOL/Auxiliary board (1) that reads out the OTIS boards of a Front End box. The GOL serializes the time information and sends it to the off-detector electronics through a 1.6 Gbit/s optical link.
- OTIS boards (4) for time measurement, that each take the output of two ASDBLR boards. The OTIS board has a 32 channel TDC-chip that digitizes the hit signal time wrt the LHC Bunch Crossing.
- ASDBLR boards (8) with ASICs connect to the HV boards to amplify the signals received from these. A board contains two ASDBLR ASICs, that is two 8-channel Amplifier-Shaper-Discriminator with ion-tail cancellation and BaseLine Restoration. (Designed for ATLAS TRT Readout)
- High Voltage boards, (hidden behind the aluminium chassis) plug into a module's feed-through board. Distribute HV to 128 anode wires and pass the straw signals to the ASICs.

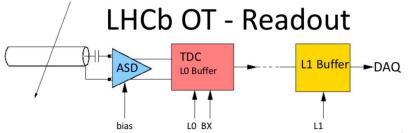
FEE Box boards on one side & another set of same boards on the other side.

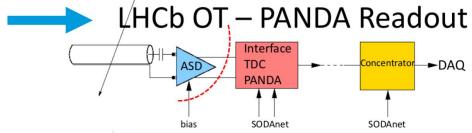

- GOL/Auxiliary board (1) that reads out the OTIS boards of a Front End box. The GOL serializes the time information and sends it to the off-detector electronics through a 1.6 Gbit/s optical link.
- OTIS boards (4) for time measurement, that each take the output of two ASDBLR boards. The OTIS board has a 32 channel TDC-chip that digitizes the hit signal time wrt the LHC Bunch Crossing.
- ASDBLR boards (8) with ASICs connect to the HV boards to amplify the signals received from these. A board contains two ASDBLR ASICs, that is two 8-channel Amplifier-Shaper-Discriminator with ion-tail cancellation and BaseLine Restoration. (Designed for ATLAS TRT Readout)
- High Voltage boards, (hidden behind the aluminium chassis) plug into a module's feed-through board. Distribute HV to 128 anode wires and pass the straw signals to the ASICs.

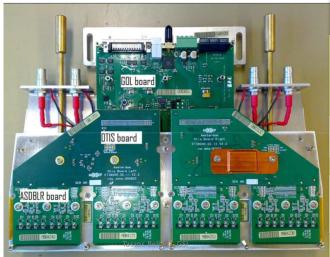
FEE Box boards on one side & another set of same boards on the other side.


- GOL/Auxiliary board (1) that reads out the OTIS boards of a Front End box. The GOL serializes the time information and sends it to the off-detector electronics through a 1.6 Gbit/s optical link.
- OTIS boards (4) for time measurement, that each take the output of two ASDBLR boards. The OTIS board has a 32 channel TDC-chip that digitizes the hit signal time wrt the LHC Bunch Crossing.
- ASDBLR boards (8) with ASICs connect to the HV boards to amplify the signals received from these. A board contains two ASDBLR ASICs, that is two 8-channel Amplifier-Shaper-Discriminator with ion-tail cancellation and BaseLine Restoration. (Designed for ATLAS TRT Readout)
- High Voltage boards, (hidden behind the aluminium chassis) plug into a module's feed-through board. Distribute HV to 128 anode wires and pass the straw signals to the ASICs.

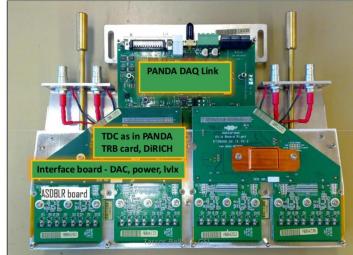
FEE Box boards on one side & another set of same boards on the other side.


- GOL/Auxiliary board (1) that reads out the OTIS boards of a Front End box. The GOL serializes the time information and sends it to the off-detector electronics through a 1.6 Gbit/s optical link.
- OTIS boards (4) for time measurement, that each take the output of two ASDBLR boards. The OTIS board has a 32 channel TDC-chip that digitizes the hit signal time wrt the LHC Bunch Crossing.
- ASDBLR boards (8) with ASICs connect to the HV boards to amplify the signals received from these. A board contains two ASDBLR ASICs, that is two 8-channel Amplifier-Shaper-Discriminator with ion-tail cancellation and BaseLine Restoration. (Designed for ATLAS TRT Readout)
- High Voltage boards, (hidden behind the aluminium chassis) plug into a module's feed-through board. Distribute HV to 128 anode wires and pass the straw signals to the ASICs.




FEE Box boards on one side & another set of same boards on the other side.

OT Readout – Changes for PANDA Readout

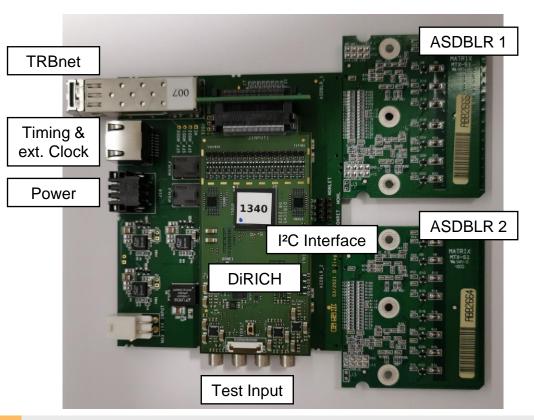


1 optical link, 1.28 Gbit/s

- 4 OTIS TDC chips, 32 ch/chip
- 16 ASDBLR chips, 8 ch/chip (2 chips/board)

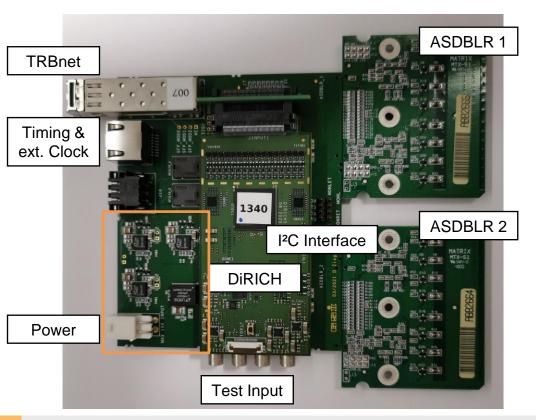
Input: 128 channel

Interface board – Design at GSI


Requirements for Interface board:

- Interconnect ASDBLR with DiRICH (TDC)
- Power and Controls
 for ASDBLR (2x) and DiRICH (1x)
- Pass ASDBLR digital signals to DiRICH
- Clock In & Data Out from DiRICH
- Send test signals directly to ASDBLR
- V.1 → easily monitor and measure signals

Interface board - ASDBLR to DiRICH



- TRBnet
 - Communication & datatransfer
- Timing & ext. Clock
 - 200 MHz on-board clock available
- I²C Interface
 - DAC programming → ASDBLR thresholds
- Test Input
 - Directly pass pulses to ASDBLR
- Power
 - 2 possibilities:
 - 4 voltages by lab powersupply
 - Voltages created on-board by DCDC converter

Interface board v.1 with mounted DiRICH and ASDBLRs

Interface board - ASDBLR to DiRICH

- **TRBnet**
 - Communication & datatransfer
- Timing & ext. Clock
 - 200 MHz on-board clock available
- I²C Interface
 - DAC programming → ASDBLR thresholds
- Test Input
 - Directly pass pulses to ASDBLR
- Power
 - 2 possibilities:
 - 4 voltages by lab powersupply
 - Voltages created onboard by DCDC converter

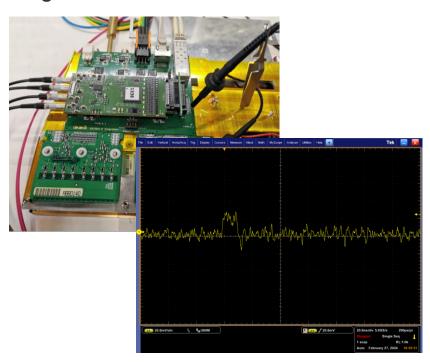
Interface board v.1 with mounted DiRICH and ASDBLRs

Threshold tests:

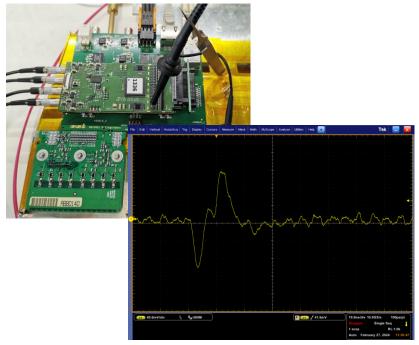
 ASDBLR (I²C Interface) and DiRICH (TRBnet) thresholds can be set

First hit rate tests:

- Input test pulse (up to 100 kHz)
- Check hit rates in DiRICH TDC
- Match both thresholds to reduce noise



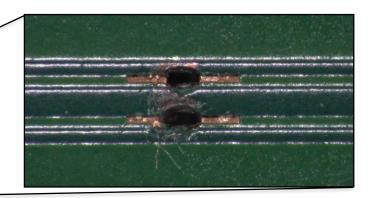
TRBnet HitRegister for one DiRICH



Signals from ASDBLR

Signals after DiRICH amplifier

Scope screenshots and probe setup


Interface board – Debugging and challenges

- Timing: RJ45 input mismatched compared to CTS output
 - → Manually corrected
- ASDBLR thresholds: I²C unstable while DiRICH mounted

→ Cut tracks to DiRICH FPGA

The I2C issue solved in v.1 board by trace cut-through

OT PANDA Readout Crate

Readout setup

- Capacity up to 8 DiRICH per TRB3 peripheral (32ch./DiRICH)
- TRB3 Crate
- 6 TRB3sc
 - 1 CTS (Central trigger system)
 - SFP-AddOn-v2
 - RJ45 AddOn Board
 - 1 master
 - 4 peripherals

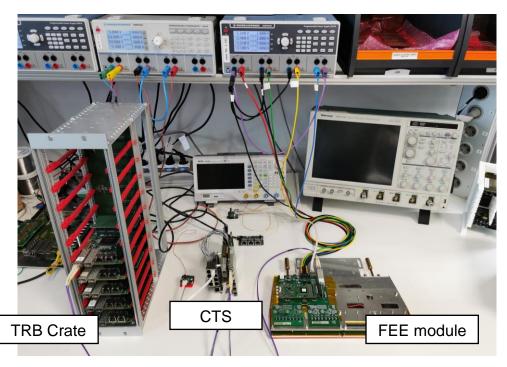
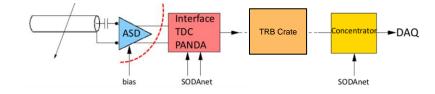
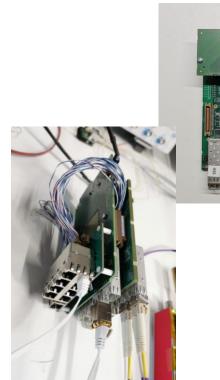



Photo of crate and all components

OT PANDA Readout – Next Steps

- Continue testing, check and debug interface board → design of version 2
- Progress with available ASDBLR boards on straw-tube modules
- Further integration with DAQ
- Use of Data Concentrator


- Common DAQ Clock Source
- Build and use more readout crates for test in labs and in beam-lines
- ... have fun and enjoy the system!

Back-up - TRB system

Back-up - half-sized FEE module

Outer Tracker (half-sized) FEE module