STT – E-Readout and More

- STT System
- FOM (STT&STS)
- STT Reduced
- Discussion

Peter Wintz (FZ Jülich) for the STT Group (JU and AGH Krakow, IFIN-HH Bucharest, FZJ)

June-25th, 2024 | PANDA CM 2024-2

STT Mockup

STT - Straw Tube Tracker

Straw tracker in 2T solenoidal B-field

- 4224 straws in 19 axial + 8 stereo-layers $(\pm 3^{\circ})$
- Close-packed self-supporting layers by gas overpressure
 - homogenuous tube stretching (Ø, length), $\rm F_{total}$ ~33 kN
 - $-\,$ precise wire tension, T_{wire} with low $\sigma\text{<}2\%$ (Ø tolerance)
- X ~0.04% X0 per layer, ~3.3% X0 endcap region
- Drift time and time-over-threshold readout for PID
- $-\sigma(r) \sim 150 \mu m$, $\sigma(z) \sim 2-3 mm$, $\pi/K/p$ -separation < 1GeV/c
- Particle rates <1 MHz/straw, <10 kHz/cm²
- $\Delta p/p$ ~ 1-2 % (with MVD)
- Input for SW trigger (hit to track to event assoc. & identification)

PANDA-STT (3D-view)

stereo layers in red/blue.

Straw components

Close-packed layers (<50µm gap)

https://arxiv.org/abs/1205.5441

Parameter	Value	
Diameter	10 mm	
Wall	27 µm	Mylar-Al
Length	1.4 m	
Wire diameter	20 µm	W/Re(3), Au-plated
Gas	90/ 10	Ar/ CO2
Gas pressure	2 bar	1 bar overpressure
Material budget (X/X0)	0.04%	per layer
Number tubes	4224	
Number layers	19/ 8	Axial/ stereo-layers
Stereo angle	±3°	
Spatial resolution	150 µm	(σ, single hit)
Time resolution	~ 1 ns	
Total material budget /X/X0)	1.3%	incl. STT walls
Momentum resolution	1-2%	with MVD
Particle rates per straw	< 1MHz	< 10 kHz/cm ²

STT-protoype (mockup)

Self-supporting hexagon sector prototype and with 3×3kg Pb bricks on top (insert).

р. 2

STT – E-Readout

- Status (AGH / JU Krakow)
 - PASTTREC-ASIC: > 100% available
 - FEBv4: 800 produced (12800 ch) and tested
 - TRB5 BW is compatible with full luminosity (TRB3 BW limited)
 - TRB5+AddOn card (inline), FEBv4 control by TRB5 FPGA, prototyping done
 - FEBv4/TRB5 readout prototyping done
 - QA procedure established
- Per TRB5 board
 - Single FPGA, 32ch high-resolution TDC or 64ch lower resolution
 - AddOn card for 4× FEBv4 per board

Circuitry of FEB readout and control by TRB5 FPGA

5.3 cm

TRB5sc with inline 4-conn AddOn

STT – E-Readout

- PASTTREC/TRB & DAQ system fully verified
- 4-week proton-proton experiment beam time with HADES
 - 4.5 GeV proton beam kin. energy
 - STS1+STS2 (704 + 1024 ch) for forward tracking
 - High particle load: 1-2×10⁵/straw, max. 5-6×10⁵/straw (high intensity runs)
 - ASIC parameters optimized for low NL and NL stable during BT
 - Low threshold and low gas gain (A~2×10⁴, HV 1800V \rightarrow 1700V)
 - DAQ with ASIC settings control and 'continuous' verification by DAQ

AGH

Measurements: Types and Procedures

- Baseline DACs test (for 4mV20ns only)
 checks DACs monotonicity with DAC scan and TOT measurements
- Threshold DAC test (for 4mV20ns only)
 - checks DAC monotonicity with DAC scan and TOT measurements
- **Baseline measurements** (all configurations)
 - find baseline settings/corrections for all channels
- Threshold scan (all configurations)
 - verification of the baseline settings, shows differences between channels after baseline correction
- Quick channels test (for 4mV20ns only)
 - checks whether channels give right response for small and big input charges (further measurements possible only when all channels are good)
- S-curve measurements (all configurations)
 - measure the number of counts versus input charge for selected thresholds, to calculate noise, gains, etc.
- TOT Scan (all configurations)
 - measure the TOT value versus input charge for selected thresholds - allows to calculate charge from TOT value for specific threshold

Forschungszentru

- FEB QA by charge injection and signal readout (FEBv4 + TRB3)
- QA procedure includes 7 criteria
- Fully automatic (python scripts)
- QA results in data base

р. 4

Prototype Systems and Experiment Installations

- Full system tests: straws and e-readout
- STT prototype at COSY
 - High redundancy central tracker (~ 24 straw hits/track)
 - Tracking and spat. resolution determination done
 - PID by ToT
 - 0.6 2.7 GeV/c proton/deuteron momentum range
- STS1 in HADES experiment beamtime
 - Low redundancy forward tracker
 - Same straw type as in STT
 - High particle rates in 4weeks experiment beamtime

proton and deuteron beams, 0.6 - 3 GeV/c

In-beam test setup at COSY. Arrows mark alignment elements.

- Results on next slides
 - Particle rate capability
 - Time and time-over-threshold measurements
 - Timing methods
 - Calibration and tracking
 - Straw signal simulation
 - PID
- Conclusions for reduced STT in PANDA

High Particle Rates

- Particle rates (STS1 & FEB & DAQ)
 - $\sim 2 \times 10^{5}$ /straw; high intensity runs: $\sim 6 \times 10^{5}$ /straw
 - HADES: DAQ trigger ~ 50kHz
 - Beam induced particle background in broad time range
- TDC times and time-over-threshold data (704 straw channels)
- Clean & in accordance with simulation

Peter Wintz

16

Calibration and Tracking

- Aim: re-check tracking methods

- 1. Calibration procedure
- 2. Tracking method
- 3. Alignment method

- Calibration procedure

- 1. r(t) isochrone drifttime relation from TDC spectrum (G. Perez)
- 2. r(t) iterative fitting using reco tracks ($\sigma \sim 310 \mu m \rightarrow 217 \mu m \rightarrow ..$)

- Tracking resolution: $\sigma = 217 \,\mu m$ (mean = 17 μ m)

- No hit filter, no δ -electron rejection (~ 1/8 hits probability)
- $-\chi^2$ -fit, biased from close-to-wire hit (no redundancy)
- I/r ambiguity close to wire difficult to resolve
- Low gas gain (~2×10⁴) chosen, little worse resolution close to wire (ion cluster spread)

р. 7

XΖ

Tracking with No-Redundancy

- Calculate target point (X0,Y0) at Z0 = -135mm from reco tracks
 - Smearing by ~ 3.5m back propagation
 - Influence of MCS: $\Delta x, y \sim 700 \mu m$ at Z0
- Alignment of double-layers to shift target point to (0,0)
 - x-shift: 7.47 mm
 - y-shift: 2.72 mm

- Target distribution after STS1 position adjustment and recalibration
 - r(t) re-calibration using reco tracks
 - $-\sigma_X$ (target) = 3.01mm (m= 21µm)
 - $-\sigma_{Y}$ (target) = 4.99mm (m= -3 µm)
 - red circle marks $\ensuremath{\mathsf{IH}}_2$ target cell diameter

p. 8

Time-Over-Threshold

Time-over-threshold (ns) versus Drift time (ns)

ProjectionY of binx=9 [x=8.0..9.0]

- All 640 channels, offset corrected drift times
- Top left: raw data, show characteristic ToT(driftime) distribution
- Top right: ToT with time dependence correction (fit)
- Single hit ToT: ~ 8.3% resolution
- $-\Sigma$ ToT/N_{hits} resolution: ~ 4.4 %
- 8 hits per track, no truncation

Time Pattern Recognition

- Time pattern recognition for STS1 data (staggered double-layers)
- pp-elastic candidate events
- Averaged TE-time (Σ TE-time / N_{nits})
 - 4hits: $m/\sigma = 259 \text{ ns} / 16.6 \text{ ns}$ (more uncorr. hits)
 - 5hits: m/ σ = 259ns / 12.9 ns
 - 8hits: m/ σ = 261ns / 11.1 ns
- Averaged LE-time (Σ LE-time / N_{nits})
 - 4hits: $m/\sigma = 67.7$ ns / 17.3 ns (more uncorr. hits)
 - 5hits: m/ σ = 65.7ns / 12.3 ns
 - 8hits: $m/\sigma = 67.3 \text{ ns} / 7.0 \text{ ns}$

Time Measurement and Space-Drifttime Relation

STS1 in-beam data

- r(t) calibration using TDC spectra (r(t)/R= $\sum n_i/N$)
- in-beam data (red line) agrees well with single straw simulation (green line)
- deviations for r<1mm (prim. ionization)
- clean drifttime spectra
- only ~3.2ns spread in max. driftime for 703 ch
- corresponds to <40µm spread in straw radius

In PANDA-STT:

- iterative re-calibration r(t) with reco tracks
- high redundancy

Pressurized straws with thin film-wall tube have a high geometrical precision

p. 11

Performance

Simulation STT in B-Field

ToT/dx Measurement and dE/dx Simulation

Summary and Next Steps

Set up one STT sector (~700 straws) with readout and DAQ

- Cosmic data taking, radioactive source
- SW: data analysis, calibration, tracking, t0 extraction, ToT methods
- Most components existing (straws, electronic FEBs, ..)
- ToDo: assembly straw modules, FEE layout & cooling system, alignment method

Performance goals (4D+PID tracker)

- Spatial resolution ~ 100µm
- ToT/dx resolution < 5% (dE/dx < 10%)
- t0 extracted from track data (Chi2 fit)
- Simulation

STT@COSY and HADES-STS as basis

- Many more layers in STT sector
- dE/dx by ToT further optimisation
- Systematic study, e.g. signal peaking time ..

June 25th, 2024

STT – Compact

- Assumption: ZEUS solenoid dimensionMVD, DIRC-bar dimensions unchanged
- Impacts for STT geometry
 - PANDA org: $R_{outer} = 44.8$ cm
 - PANDA new (?): $R_{outer} = 33.6$ cm
 - 410 \rightarrow 320 mm outer active radius (max.)
 - 27 \rightarrow 16 layers (tbc) in radial direction
 - 19 \rightarrow 10 axial, 8 \rightarrow 6 stereo layers
 - Vertical \rightarrow horizontal Central Frame
- Once straw modules assembled, no later modification

12 510

- Tracking performance under study (simulation)
 - Momentum resolution
 - Pattern recognition, curling tracks, ..

p. 15

Summary

- Particle rates and charge load early determined by $\overline{p}p$ -simulation for PANDA full luminosity	done
 FOM: rates for innermost layers: 1 MHz/straw and <10 kHz/cm, charge load uncritical 	done
 PASTTREC ASIC parameters optimized for STT straws in PANDA, FEB size minimized 	done
 ASIC/FEB/TRB and DAQ system fully verified in-beam with data analysed 	done
 High particle load in forward detector STS at HADES 	\checkmark
- ASIC settings optimized (BL restoration and ion tail cancel., low NL, low thresh., low gas gain,)	\checkmark
 Full signal dynamical range dE/dx tested with STT tests @ COSY (4x1 week, p/d beam 0.6-3 GeV/c) 	\checkmark
 Clean time measurements and ToT for PID, high resolutions, time PTR methods, coarse t0 extraction (<7 ns) 	\checkmark
 Good ToT resolution for PID now already with 8 hits (BL tuning per channel, auto script) 	\checkmark

- STT reduced:
 - Actually: no electronic-specific issue left open
 - But essential: high efficient straws & readout, PTR (FPGA) and tracking due to lower number of hits
 - Spatial and momentum resolution will be lower

- Main uncertainty: beam/target layout, B-field, .. and rates in innermost straw layers

Thank you very much

for

your attention!

р. 17