PANDA MVD electronics developments in Torino

D.Calvo, F.Cossio, P.De Remigis, F.Lenta, <u>G.Mazza</u>, M.Mignone, R.Wheadon, J.Becker, K.T.Brinkmann, M.Caselle, A.Kopmann, O.Manzhura, M.Peter, V.Sidorenko, P.Stanek, T.Stockmanns, L.Tomasek, N.Troll, K.L.Unger, H.G. Zaunick

INFN sez. di Torino

mazza@to.infn.it

June 25th, 2024

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

SSDs readout requirements

Specification	Min	Max	Unit
Channels per chip	64		
ToA (pk-pk)		6.25	ns
ToA (r.m.s.)		1.8	ns
Charge resolution	8		bits
Input charge	1	40	fC
Input capacitance	2	17	рF
Max rate per strip		40	kHz
Noise		1500	e^-
Preamp peaking time	50	≥ 100	ns
Reference clock		160	MHz
Power consumption		256	mW
Radiation tolerance		20	kGy
Chip dimensions	4.5 × 3.5		mm ²
Pads position	On two sides only		

ToASt analog channel

- CSA with selectable input signal polarity, gain $\approx 5 \mbox{ mV/fC}$
- Shaper with adjustable peaking time
- Current buffer
- Test pulse injection via integrated capacitor

- ToT stage with programmable discharge current
- Low frequency feedback to set baseline
- Two comparators with independent thresholds
- Local DACs for threshold and discharge current fine tuning

MVD group

ToASt channel schematic

- Common time reference : 12 bits time stamp distributed to all channels
- Time stamp are Gray-encoded
- LE and TE registers latch time stamp at comparator rising/falling edges

G. Mazza (INFN Torino)

MVD group

ToASt architecture

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

Data concentrator

\rightarrow Details in M. Caselle presentation later in this session

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

ToASt version 1

- CMOS 110 nm technology
- Digital-on-top design flow
- Die size : $3.24 \times 4.41 \text{ mm}^2$
- Left pads pitch (on two rows) : 63 μ m
- Right pads pitch : 90 μ m
- Three power domains : analog, digital, digital pads (all supply voltages at 1.2 V)
- One external analog reference $(V_{BG} = 600 \text{ mV})$
- SLVS driver/receivers
- TMR protected digital logic (using CERN TMRG tool)

Measurement - transfer function

Before calibration

Fully functional at 160 and 200 MHz

- Calibration reduces gain spread from 12% to 1.7% and offset spread reduced from 30% to 5.8%
- Power consumption : 180 mW @1.2 V

After calibration (gain & offset)

Measurement - test pulse ranges

- Test pulse input with internally programmable amplitude via 6+1 bit internal DAC.
- Two test pulse ranges (the +1 bit) :
 - Normal range : up to 16 fC, step 0.25 fC
 - Extended range : up to 66 fC, step 1.03 fC
- Non linearity (rms) <0.64% in the 2÷16 fC range

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

Measurement - leading and traling edge

 Test : test pulses synchronous with reset

- Events per channel : 100
- Time bin : 6.25 ns

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

Measurement - noise

- S-curve obtained with channel threshold scan
 - Test pulse resolution and global threshold resolution too coarse
 - Baseline resolution gives similar results but with fewer points
- Conversion from DAC codes to input charge from simulations
- No input capacitance
- Average noise : 0.034 fC (211 e⁻)
- Maximum noise : 0.05 fC (312 e⁻)

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

TID test (@ University of Padova)

- Digital interface still working after 250 kGy
- Power consumption increase after 10 kGy (expected : leakage current in MOS)
- Gain drop after 4 kGy (unexpected)
- Full recovery after high T annealing
- Problem traced back to leakage current in analog switches
 - Enclosed layout has been adopted for switches in ToASt v2

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

SEU test (@ INFN LNL SIRAD facility)

- Ion fluence $\sim 5 \cdot 10^7$ per ion
- Estimated cross section for 200 MeV protons : 3×10^{-15} cm²
- Hadron flux 5×10^6 hadrons/(cm²×s) \rightarrow 9.3×10^{-2} errors/(h chip)
- ${\color{black}\bullet}$ Only 1–0 errors observed triplication error found in the Verilog code

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

Beam test at COSY - experimental set-up

 \rightarrow Details in H.G. Zaunick presentation later in this session

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

Changes from v1 to v2 - 1

- Die size : 3.24 \times 4.41 $\rm mm^2 \rightarrow$ 3.24 \times 4.59 $\rm mm^2$
- Same pinout as v1
- Reference voltage generated by internal bandgap
 - V_{BG} pin still present for filtering
 - Internal bandgap can be disabled (GCR2[11])
- Enclosed layout for analog switches
 - It should solve the analog functionality issue
 - It will not solve the power supply increase issue
- Channel DACs threshold voltage resolution has been increased from 5 to 6 bits.
 - Range bits for these two DACs has been moved to CCR0[9:8].

Enclosed layout

G. Mazza (INFN Torino)

June 25th, 2024

Leakage current variability

F.Faccio et al., Variability of the TID response of transistors in *<omiss>* 130nm technology

Note : We do not have data for our 110 nm technology. These are the closest ones I could find.

G. Mazza (INFN Torino)

MVD group

June 25th, 2024

Changes from v1 to v2 - 2

- Full review of the digital part
 - Change in synthesis tool to avoid TMR removal
 - Improvement in triplication structure
 - New TMR design guidelines from CERN

G. Mazza (INFN Torino)

June 25th, 2024

Design status and plans

ToASt v1 fully functional

- Extensively tested in lab at 160 and 200 MHz
- Beam test results very promising, work ongoing
- Issues in radiation tolerance found, corrected in v2
- ToASt v2 submitted on February 26th 2024
 - delivery expected on August 5th 2024
- Same test board as v1
 - minor changes in the software are required
- Beam time requested to LNL in 4Q2024 for v2 SEU test

Spare slides

MOS intrinsic parasitic transistor

G. Borghello, Radiation effects on 28nm CMOS technology

MVD group

June 25th, 2024

Radiation induced leakage current

G. Borghello, Radiation effects on 28nm CMOS technology

Note : I_{DS} values are for a 28 nm technology.

G. Mazza (INFN Torino)

MVD group

June 25th, 2024