

A high time resolution and high dynamic range ASIC for the micro vertex detector in the PANDA experiment

Hui Zhang, Toko Hirono, Ivan Peric

Karlsruhe Institute of Technology, ASIC and Detector Lab

www.kit.edu

- The PANDA detector is composed of several subdetectors
- The Micro Vertex Detector (MVD) is a tracking device for charged particles. It is the innermost sub-detector system of the target spectrometer
- Main tasks of the MVD are:
 - High vertex resolution for primary and secondary vertices of short-lived particles
 - Improvement of momentum resolution
 - Additional input for particle identification
- High time resolution of 1ns RMS enables efficient track reconstruction and possibly particle identification by time of flight
- Energy resolution in wide dynamic range 100ke with 100e noise for dE/dX measurements and particle identification
- Pixel size: 80 μm x 80 μm
- Chip size: 1 cm x 2 cm

- HVCMOS 180 nm technology with MPW run
- Chip Size: ~ 5 mm x 5 mm
- Pixel Matrix: 29 columns x 62 rows
- Pixel Size: 50 μm x 165 μm
- Configuration register
- Readout Cell
- End of Column
- Synthesized Digital
- Bias Block
- Pads

- HVCMOS Sensor, a new generation of particle detectors
- Commercial technology, not expensive
- The sensor and readout electronics in the same die
- Use external negative bias voltage
- Pixel is based on a deep n well with electronics inside, isolated against HV
- Charge collection by drift
- Substrates from 300Ω cm to $\sim 20k\Omega$ cm
- Good time resolution, detection efficiency and radiation tolerance
- Can be thin
- Radiation tolerant technology, further increased by special design

Pads

- Radiation tolerant PMOS transistors
- **Deep submicron**
- Guard Ring

Shielding		
		In-pixel Electronics
HVCMOS Cross Section HV Bias deep N well 30um depletion zone		C _{rri} Sensor Offset
p substrate	Configuraton registers	Injection -HV - R 4 - TDAC Data transfer line
	Hit Buffer Double ToT storage Time stamp RAM Address Hit receiver with neighbour logic Converter (TDC) Pixel address RAM TS comparator ROM	Row TDAC write
	Digital Control Unit (DCU)	Column control Injection enable 4 TDAC in Readout cell

- Charge sensitive amplifier with variable gain
- Feedback circuit
- Two comparators
 - Fast comparator: enable accurate time measurement
 - Slow comparator: enable precise amplitude measurement

- The first stage is a standard folded cascode amplifier
 - Implement variable gain
- The second stage are the two source followers
 - It provides fast time constant and voltage level shifting
 - The bias current of the second source follower is smaller than that of the first
 - The second source follower acts as a low pass filter
- Each pixel has two comparators and two readout channels

Hit Buffer, End of Column, Readout Control Unit

- Hit buffer logic
 - RAM cell
 - 4-bit Tune DAC
 - Regulated cascode receiver
 - Time to digital converter
 - Main hit buffer logic

- Main hit buffer
 - Edge detector
 - Priority logic
 - Address ROM cells
 - Time stamp RAM cells

- Time to digital converter
- The hit time is measured by storing two time stamp values
- Two time stamp counters run with the same period of 10ns and could be reset synchronously

Our circuit

- Data for each event has 55 bits
 - Coarse time stamp (20 bits TS1)
 - Energy measurement (10 bits TS2)
 - Fine time stamp (7 bits TS3)
 - Row Address (10 bits)
 - Column Address (8 bits)
- The time stamp frequency: 100MHz
- TS1 uses two 10-bit counters, one clocked with positive edge and the other with the negative edge

- Readout block, data formatting block, time stamp counter, Phase locked loop
- Readout block comprises a state machine
- Data formatting block performs 8-bit to 10-bit conversion and transmits the data serially
- Serializer is based on a binary tree, and transmits a bit on the rising and falling output clock edge
- PLL input clock of 250 MHz and output clock of maximal 800 MHz
- Maximal data rate: 1.6Gbps

- Test system
- Signal source for measurements is a test signal circuit a capacitor placed in every pixel
- The test circuit is calibrated with radioactive source

- Pulse width measurement
- The pulse width of slow signal is larger than the fast signal. The sigma value for slow channel is smaller, leading to significantly larger SNR.
- Energy resolution with SNR>1000 possible, the maximum signal limited by the injection circuit

- For 32ke amplifier does not saturate, maximum signal limited by injection circuit

- The average ToT noise is about 48 ns for slow comparator. Its gain can be obtained by fit and it is 0.413 ns/e. If we divide the ToT by gain, we obtain the noise in electrons as 116 e.

- Comparator response time and pulse width
- The time of threshold crossing is smaller when measured ToT is larger. Exponential function has been fitted to the data and it is used for the time walk correction.
- Time resolution <1ns should be possible</p>

Threshold dispersion is <60e, both comparators can be tuned

17

- Planned design improvements include:
 - reduce detector capacitance, reduce noise
 - optimize layout design
- Next prototype (named MiniPANDA), with 80 μm x 80 μm pixel size has been completed.
 - Uses two stage amplifier and one comparator
 - Second amplifier improves energy resolution by TOT
 - Uses deep p-well and isolated amplifier
 - Test system ready, results soon
- Following testing of the MiniPANDA ASIC, the full-size sensor will be designed.

