

Hardware Acceleration LAB

PANDA FEE/DAQ Workshop DAQ session

5 years ago

Now

- Subdetector subsystem specific readouts continue stable developement
- Multitude of parallel developments
 - Multiple SADC firmware sets
 - ...
 - Complete TRB-based systems
 - ...
 - At least 3 implementations of GbE
 - ...
 - Data Concentrators with Kintex and Zynq
 - E.t.c...
- Prototype system based on Aurora-Sync
 - Set of components to build complete synchronous DAQ on Xilinx platforms
 - Prototype set up but not yet evaluated

Aurora Sync

- Regular Aurora GT enhanced with synchronous mode
 - Synchronization pulse and clock distribution
 - No external PLL required
 - All Xilinx GT families
 - Platform independent (Xilinx FPGA and GT required)
- Logic components architecture
 - Master (clock and sync pulse source)
 - Endpoint (sync receiver, data source)
 - Concentrator (Endpoint, data agregator, Eth gateway)
- AXI-based infrastructure
 - Stream to memory-mapped converters
 - Facilitated IP integration
 - Suitable for preprocessing in HLS
 - Native control and monitoring (petalinux with memory R/W operations)
- 10G Eth UDP from the Concentrators
 - To be processed by the online servers

However

- Considering:
 - Timescale for PANDA
 - PANDA Satellite activities
 - Integration with CB-ELSA, CBM, AMBER, A1, ... required
- Focus on opitimizing the subsystems and integration
- Explore new solutions and technologies
- Search for synergies
- Search for future-proof solutions
- Easy to maintain, upgrade
- Supported by the community or well-established in the industry
- Physics and the detector design (almost) didn't change
 - E.g. PANDA EMC TDR published in 2008
- Technology keeps progressing
 - E.g GPU 1.3 TFLOPs in 2008 vs 35 TFLOPs in 2020 vs 82 TFLOPs in 2022

The DAQ session

09:00	DAQ intro	Grzegorz Korcyl
	AUD	09:00 - 09:10
	CBM DAQ overview	David Emschermann
	AUD	09:10 - 09:40
	CRI firmware	Dr Wojciech Zabolotny
10:00	AUD	09:40 - 10:10
	NestDAQ	Ken Suzuki
	AUD	10:10 - 10:40
	Coffee	
11:00	AUD	10:45 - 11:15
	CB-ELSA DAQ system	Jan Hartmann
		11-15 11-55
		55.11 - 51.11
12:00	PANDA-Phase0 Mainz DAQ	Oliver Noli
		11.55 - 12.15
	AMBER DAQ	Igor Konorov
	AUD	12:15 - 12:35
	Status of the Kintex Data Concentrator	Pawel Marciniewski
	AUD	12:35 - 12:55
13:00	Status of the Zynq Data Concentrator	Olena Manzhura
	AUD	12:55 - 13:15