

Peter Hurck

Strange hadron spectroscopy at GlueX and beyond

DPG Spring Meeting, Gießen 2024

Introduction

- Visible matter in the universe is made from quarks which bind together via the strong interaction to form hadrons
 - * Integer spin \rightarrow meson
 - * Half-integer spin \rightarrow baryon
- Quantum chromodynamics (QCD) is the theory describing the strong interaction
- How does the interaction work that binds almost massless quarks into massive hadrons?

proton (uud): $m(u) + m(u) + m(d) = 2.2 \text{ MeV} + 2.2 \text{ MeV} + 4.7 \text{ MeV} \neq 938 \text{ MeV} = m_p$

Introduction

- QCD gives rise to spectrum of hadrons
 - Many qq̄ and qqq states have been observed
 - *qqqqq, qqqqq, ...* are not forbidden!

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M.GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc...

Phys. Lett. 8 (1964) 214

- * $q\bar{q}g$ are also allowed!
- so are *g*-only states

Current data situation

- Understanding the light baryon spectrum is a long standing quest and much progress has been made in the past decades
- Strange baryons, and especially double strange baryons, are less well studied
 "For several decades, there has been very little new experimental data bearing on the properties of Λ and Σ resonances. [...] the field is starved for data. Recent analyses (see below) have improved what we know about the properties of the known Λ and Σ resonances, but the established resonances are the same ones that were listed in our 1984 edition [...]"
 Λ and Σ resonances, PDG (2021)
- The situation in the strange meson sector is much the same. Not much has happened since 1990

"The **spectrum of kaon excitations** is much less clear cut and therefore **deferred to a future edition**, when further data might become available."

- Spectroscopy of Light Meson Resonances, PDG (2023)

CEBAF at Jefferson Lab

CEBAF at Jefferson Lab

- up to 12 GeV electron beam
- high luminosities for Hall A/C (high resolution spectrometer)
- * CLAS12 in Hall B
 - Large acceptance spectrometer
- * GlueX in Hall D
 - Focus on exotic hybrid mesons BUT:
 Large data set available to study wide range of reactions

GlueX in Hall D

- tag electrons to determine photon energy
- * Acceptance: $\theta_{lab} \approx 1^{\circ} 120^{\circ}$
- * Charged particles: $\sigma_p / p \approx 1\% 3\%$

(8% – 9% very-forward high-momentum tracks) $\sigma_E / E = 6\% / \sqrt{E} \oplus 2\% 7$

Photons:

$\Lambda(1405)$ line shape measurement

 $\Lambda(1405) \rightarrow \Sigma^0 \pi^0 \ (I = 0)$ is free from $\Sigma(1385)$ background

- Excited Λ with $J^P = \frac{1}{2}$
- * $\Lambda(1405) \rightarrow \Sigma \pi$
- Previous measurements (e.g. COSY-Jülich or CLAS) show very clear non-Breit-Wigner line shape
- Interpretation under active investigation
- Many theory models find two-pole structure: not just one state
- * Recent PDG addition: ** $\Lambda(1380)$

$\Lambda(1405)$ line shape measurement

N. Wickramaarachchi (HYP2022)

Excited hyperons

Phys. Rev. C 105, 035201

$\Lambda(1520)$ SDME combinations

0.5

 $\frac{1}{-(t-t_{min})} \frac{1.5}{(GeV^2/c^2)}$

0

Cascades at GlueX

		Overall	– Status as seen in –					
Particle	J^P	Status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$		
$\Xi(1318)$	$1/2^{+}$	****						
$\Xi(1530)$	$3/2^{+}$	****	****					
$\Xi(1620)$		*	*					
$\Xi(1690)$		***		***	**			
$\Xi(1820)$	$3/2^{-}$	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**						
$\Xi(2370)$		**						
$\Xi(2500)$		*		*	*			

- Only six well known states (>3***)
- * Would expect as many Ξ s as N*s and Δ s
- * Not many photoproduction experiments have been performed so far (S = -2)
- GlueX with its good charged and neutral final state particle coverage could help here
- Difficult analyses due to many final state particles

Cascades at GlueX

J. Hernandez (Baryon 2022)

Cascades at GlueX

C. Akondi (SESAPS 2021)

- * We see both ground states
- * Measure cross-sections for Ξ^-
- ♦ Less stats for Ξ⁰ but clear signal

Further Cascades at GlueX

B. Sumner (GHP 2023)

 $\Xi^{-}(1820)$

C. Akondi (GHP 2023)

• Excited
$$\Xi(1820)$$
 with $J^P = \frac{3}{2}^{-1}$

* *** resonance seen in $K^-\Lambda$ decays

- * First measurement of $\Xi(1820)$ in photoproduction
- * Only dominating feature in the $K^-\Lambda$ invariant mass

Y(2175) aka $\phi(2170)$

BaBar: Phys. Rev. D 77, 092002 (2008)

- BaBar (ISR):
 - * Peaking structure at around 2175 MeV in $e^+e^- \rightarrow \phi f_0(980) \rightarrow \phi \pi \pi$
 - * Peaking structure at around 2125 MeV in $e^+e^- \rightarrow \phi \eta$
- * BES then also saw peak in $\phi f_0(980)$ in $J/\psi \rightarrow \eta \phi f_0(980) \rightarrow \eta \phi \pi \pi$:
 - * Observed at 2186 MeV
- Strangeness rich environment
- * Interpretation not clear, masses vary a lot
- * Strange partner of Y(4230)? $Y(4230) \rightarrow J/\psi \pi^+ \pi^-$

 0.33 ± 0.14

 1709 ± 19

 325 ± 68

 2127 ± 24

 60 ± 50

 $1 - \mathcal{B}_{KK^*(892)}^R - \mathcal{B}_{\phi\eta}^R$

 $M_R(MeV)$

 $\Gamma_R(MeV)$

Y(2175) aka $\phi(2170)$

F. Nerling (MESON2023)

KLong facility in Hall D

- * New kaon beam facility approved to run 200 days in Hall D
 - Study of hyperons and kaon spectroscopy
- * Produce $\approx 10^4 K_L / s$ (1000 times higher than previous experiments)
- Proton and neutron targets
- Use GlueX spectrometer to identify final state
- * Might run 2026-2028

Kaon spectroscopy at AMBER

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update.

- A rich spectrum of kaon resonances is expected from quark model calculations
- * So far 25 states known, of which 16 considered *established*
- * Only 4 (!) new states since 1990 added to PDG
- Strange hybrid mesons or other exotics?

Previous work at COMPASS

HK 10.1

B. Grube, Perceiving the Emergence of Hadron Mass through AMBER@CERN, 2021

- COMPASS identified 720k exclusive $K\pi\pi$ events
- Partial wave analysis
 performed and promising
 preliminary results
 - Problems:
 - * PID, π/K separation reliable up to ~45 GeV
 - kinematic regions with vanishing acceptance ultimately results in leakages between partial waves

AMBER

											11.	K 10.1
	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
AMBER Phase-1					Phase-1							
Long Shutdown 3					4	Long Shu	tdown 3					
AMBER Phase-1 (cont)						4				Phase-1		
Long Shutdown 4										¥	Long	Shutdown
RF-separated beam available											FR-s	separated
AMBER Phase-2												

- AMBER phase-1 underway *
 - Focus on \bar{p} production (HK 12.3) *
 - r_p measurement (HK 70.1) **
 - DY physics **

- Studies for phase-2 proposal ongoing
 - Kaon spectroscopy *

https://amber.web.cern.ch/

HK 101

- Work ongoing to optimise experiment configuration *
- Aim: record ~20 times more $K\pi\pi$ data compared to COMPASS *

Summary

- GlueX provides valuable photoproduction data for many different reactions
 - DIRC upgrade will boost analysis power for strange final states
- * KLong will be the next big neutral kaon beam facility
 - New data for hyperon spectroscopy
- * AMBER will rewrite the kaon section of the PDG

GLUE

Apparatus for Meson and Baryon Experimental Research

- In addition
 - CLAS12 (Very strange group, MesonEx)
 - * J-PARC (E31: Λ(1405), E72: Λ*(1665) search, E97: Cascade spectroscopy, ...)

The next decade will boost our understanding of strange hadrons